TSRT14: Sensor Fusion Lecture 3

- Cramér-Rao lower bound (CRLB)

— Sensor networks

Gustaf Hendeby

gustaf.hendeby@liu.se

Le 3: Sensor networks and detection theory Whiteboard: • Selected derivations. Slides: • Typical sensor networks measurements • Nonlinear models in sensor networks • Dedicated LS solutions.

Gustaf Hendeby

Spring 2024

1/30

TSRT14 Lecture 3

Gustaf Hendeby

Spring 2024

4 / 30

Cramér-Rao Lower Bound (CRLB)

Theorem (Cramér-Rao Lower Bound) For any unbiased \hat{x} (E(\hat{x}) = x^0), the estimate satisfies

 $\operatorname{cov}(\hat{x}) \succ \mathcal{I}^{-1}(x^0),$

where $\mathcal{I}(x)$ is the Fisher information matrix (FIM),

$$\begin{split} \mathcal{I}(x) &= - \mathsf{E} \Big(\nabla_x^2 \log p_{\mathbf{e}} \big(\mathbf{y} - \mathbf{h}(x) \big) \Big) \\ &= \mathsf{E} \Big\{ \nabla_x^T \Big(\log p_{\mathbf{e}} \big(\mathbf{y} - \mathbf{h}(x) \big) \Big) \nabla_x \Big(\log p_{\mathbf{e}} \big(\mathbf{y} - \mathbf{h}(x) \big) \Big) \Big] \end{split}$$

under mild regularity conditions, see Appendix C.

Spring 2024 8 / 30

Spring 2024

10 / 30

Sensor Models in Radio Networks

Received signal $y_k(t)$ as a noisy, delayed and attenuated version of the transmitted signal $\boldsymbol{s}(t)$

$$y_k(t) = a_k s(t - \tau_k) + e_k(t), \quad k = 1, 2, \dots, N$$

Time-delay estimation using known training signal (pilot symbols) gives

$$r_k = \tau_k v = ||x - p_k||_2 = \sqrt{(x_1 - p_{k,1})^2 + (x_2 - p_{k,2})^2}$$

- Time-of-arrival (TOA) transport delay.
- *Time-difference-of-arrival* (TDOA) arrival time known, but the broadcast time not.
- Estimation of a_k gives received signal strength (RSS), which does not require known training signal, just transmitter power P_0 and path propagation constant α

$$P_k = P_0 - \alpha \log(\|x - p_k\|)$$

TSRT14 Lecture 3

Basic Network Sensor Models

The basic network measurements in any network (radio, acoustic, sonar, seismic) are summarized as follows:

Gustaf Hendeby

TOA $h_k(x) = r_k = ||x - p_k||$ **TDOA** $h_k(x) = r_k = ||x - p_k|| + r_0$ **DOA** $h_k(x) = \varphi_k = \arctan (x_2 - p_{k,2}, x_1 - p_{k,1})$ **RSS** $h_k(x) = P^0 - \beta \log (||x - p_k||)$

Note: All models are on the form $y_k = h_k(x) + e_k$.

TDOA GeometryCommon offset r_0 (due to unsynchronized clocks) $r_k = \|x - p_k\| + r_0$, k = 1, 2, ..., N.Estimation approach:Consider r_0 as a parameter (cf. GPS).Common in literature:Study range differences $r_{i,j} = r_i - r_j$, $1 \le i < j \le N$.Gives nice geometric interpretation.

Gustaf Hendeby

TSRT14 Lecture 3 Gustaf Hendeby Spring 2024 11/30 TDOA: maths Assume $p_1 = (D/2, 0)^T$ and $p_2 = (-D/2, 0)^T$, respectively, then $r_1 = \sqrt{x_2^2 + (x_1 - D/2)^2}$ $r_2 = \sqrt{x_2^2 + (x_1 + D/2)^2}$ $r_{12} = r_2 - r_1 = h(x, D)$ $= \sqrt{x_2^2 + (x_1 + D/2)^2} - \sqrt{x_2^2 + (x_1 - D/2)^2}$. Simplify $\frac{x_1^2}{a} - \frac{x_2^2}{b} = \frac{x_1^2}{r_{12}^2/4} - \frac{x_2^2}{D^2/4 - r_{12}^2/4} = 1$.

Spring 2024 9 / 30

Direction/Angle of Arrival (DOA/AOA)

The solution to this hyperbolic equation has asymptotes along the lines

$$x_2 = \pm \frac{b}{a}x_1 = \pm \sqrt{\frac{D^2/4 - r_{12}^2/4}{r_{12}^2/4}}x_1 = \pm x_1\sqrt{\left(\frac{D}{r_{12}}\right)^2 - 1}.$$

AOA, φ , for far-away transmitters (the far-field assumptions of planar waves):

 $\varphi = \pm \arctan\left(\sqrt{\left(\frac{D}{r_{12}}\right)^2 - 1}\right).$

a mulation and solution: $\hat{x} = \operatorname*{argmin}_{x} V(x).$		
mulation and solution: $\hat{x} = \operatorname*{argmin}_{x} V(x).$		
$\hat{x} = \operatorname*{argmin}_{x} V(x).$		
marized		
$V^{NLS}(x) = \ \mathbf{y} - \mathbf{h}(x)\ ^2 = (\mathbf{y} - \mathbf{h}(x))^T (\mathbf{y})^T (\mathbf$	$-\mathbf{h}(x)\big)$	
$\mathbf{v}^{NWLS}(x) = \left(\mathbf{y} - \mathbf{h}(x)\right)^T \mathbf{R}^{-1}(x) \left(\mathbf{y} - \mathbf{h}(x)\right)^T$)	
$V^{ML}(x) = \log p_{\mathbf{e}} \big(\mathbf{y} - \mathbf{h}(x) \big)$		
$V^{GML}(x) = \left(\mathbf{y} - \mathbf{h}(x)\right)^T \mathbf{R}^{-1}(x) \left(\mathbf{y} - \mathbf{h}(x)\right)^T$	$+\log \det \mathbf{R}(x)$	
(a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b) ·8 - (w)	
	$V^{NLS}(x) = \ \mathbf{y} - \mathbf{h}(x)\ ^2 = (\mathbf{y} - \mathbf{h}(x))^T (\mathbf{y})^T (\mathbf{y})^T \mathbf{h}^{NWLS}(x) = (\mathbf{y} - \mathbf{h}(x))^T \mathbf{R}^{-1}(x) (\mathbf{y} - \mathbf{h}(x))^T \mathbf{h}^{ML}(x) = \log p_{\mathbf{e}} (\mathbf{y} - \mathbf{h}(x))$ $V^{GML}(x) = (\mathbf{y} - \mathbf{h}(x))^T \mathbf{R}^{-1}(x) (\mathbf{y} - \mathbf{h}(x))^T \mathbf{h}^{ML}(x)$	$V^{NLS}(x) = \ \mathbf{y} - \mathbf{h}(x)\ ^2 = (\mathbf{y} - \mathbf{h}(x))^T (\mathbf{y} - \mathbf{h}(x))$ $V^{NWLS}(x) = (\mathbf{y} - \mathbf{h}(x))^T \mathbf{R}^{-1}(x) (\mathbf{y} - \mathbf{h}(x))$ $V^{ML}(x) = \log p_{\mathbf{e}} (\mathbf{y} - \mathbf{h}(x))$ $V^{GML}(x) = (\mathbf{y} - \mathbf{h}(x))^T \mathbf{R}^{-1}(x) (\mathbf{y} - \mathbf{h}(x)) + \log \det \mathbf{R}(x)$

Spring 2024 21 / 30

Dedicated Explicit LS Solutions

Basic trick: study NLS of *squared* distance measurements:

Gustaf Hendeby

$$\hat{x} = \operatorname*{arg\,min}_{x} \sum_{k=1}^{N} (r_k^2 - \|x - p_k\|^2)^2.$$

Note:

What does this imply for the measurement noise? Several *ad hoc* solutions exist for transforming the nonlinear problem into a linear problem.

DOA Triangulation Angle observations from sensor at position p_k

$$\varphi_k = \arctan\left(\frac{x_2 - p_{k,2}}{x_1 - p_{k,1}}\right)$$
$$x_1 - p_{k,1})\tan(\varphi_k) = x_2 - p_{k,2}.$$

Gustaf Hendeby

Spring 2024

22 / 30

Linear model follows immediately,

$$\mathbf{y} = \mathbf{H}x + \mathbf{e}$$
$$\mathbf{y} = \begin{pmatrix} p_{1,1} \tan(\varphi_1) - p_{1,2} \\ p_{2,1} \tan(\varphi_2) - p_{2,2} \\ \vdots \\ p_{N,1} \tan(\varphi_N) - p_{N,2} \end{pmatrix}, \qquad \mathbf{H} = \begin{pmatrix} \tan(\varphi_1) & -1 \\ \tan(\varphi_2) & -1 \\ \vdots \\ \tan(\varphi_N) & -1 \end{pmatrix}.$$

TSRT14 Lecture 3

TSRT14 Lecture 3

RSS

Spring 2024 24 / 30

Log model:

(2/2)

$$\bar{P}_{k,i} = \bar{P}_{0,i} + \beta_i \underbrace{\log(\|x - p_k\|\|)}_{=:c_k(x)}$$

Use separable least squares to eliminate path loss constant and transmitted power for wave i:

$$(x,\theta) = \underset{x,\theta}{\arg\min} V(x,\theta)$$
$$V(x,\theta) = \sum_{i=1}^{M} \sum_{k=1}^{N} \frac{\left(y_{k,i} - h(c_k(x),\theta_i)\right)^2}{\sigma_{P,i}^2}$$
$$h(c_k(x),\theta_i) = \theta_{i,1} + \theta_{i,2}c_k(x)$$
$$c_k(x) = \log(\|x - p_k\|)$$

Finally, use NLS to optimize over 2D target position x.

Gustaf Hendeby

Spring 2024 25 / 30

Shooter Localization (1/2)

Network with 10 microphones around a 'camp'. Shooter aiming inside the camp. Supersonic bullet injects a shock wave followed by an acoustic muzzle blast. Fusion of time differences give shooter position and aiming point. Model, with x being the position of the shooter,

$$\begin{split} y_k^{\rm MB} &= t_0 + b_k + \frac{1}{c} \| p_k - x \| + e_k^{\rm MB}, \\ y_k^{\rm SW} &= t_0 + b_k + \frac{1}{r} \log \frac{v_0}{v_0 - r \| d_k - x \|} + \frac{1}{c} \| d_k - p_k \| + e_k^{\rm SW}. \end{split}$$

where d_k is an implicit function of the state.

