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Lecture 5: sensor and motion models

Whiteboard:

® Principles and some examples

Slides:
® Sampling formulas
® Noise models

e Standard motion models

m Position as integrated velocity, acceleration, ..., in nD.
m Orientation as integrated angular speed in 2D and 3D.

Odometry

Spring 2024
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Lecture 4: summary
® Detection problems as hypothesis tests:
Hy: y=e,
Hy:y=Z+e=h(z)+e
* Neyman-Pearson’s lemma: T'(y) = pe(y — h(wo))/pe(y) maximizes Pp for given

Pr4 (best ROC curve).
® |n general case
T(y) = 2logpe(y — h(#'™)) — 2logpe(y) ~ x, (¢ Z(2°)2").
Bayes optimal filter
P(@ryrk) < pey, (e — h(@k)) p(@r]yrr—1)
p(@ri1lyie) = [Pop (Teg1 — Fzn))p(zkly1e) dag.

® |ntuitive work flow of nonlinear filter:
m MU: estimation from y;, = h(zy) 4 ex and fusion with &;,_1.
m TU: nonlinear transformation z = f(x;) and diffusion from x;_1 = 21, + v.
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Chapters 12-14 Overview

® Chapter 12: Principles and methods
m Principles for deriving discrete time models from continuous time ones
m Discretized-linearization
m Linearized-discretization
m Calibration
® Chapter 13: Motion models
m Kinematics
m Rotations
m Vehicle models
m Examples
® Chapter 14: Sensor models

m Techniques
m Examples
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Modeling

First problem:
Physics give continuous time model, filters require (linear or nonlinear) discrete time

model:
Classification Nonlinear Linear
Continuous time & =a(r,u) +v t=Ax+ Bu+wv
y =c(z,u)+e y=Cx+Du+e
Discrete time Tpr1= f(z,u)+0 a2pp1=Fr+Gu+7
y=h(z,u)+e y=Hzx+Ju-+e
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Sampling Formulas  (1/2)
Linear time-invariant (LTI) state-space model:

Continuous time
T = Az + Bu Tp+1 = Frop + Guy,

y=Cx+ Du yr = Hzxyp + Jug
w is either input or process noise (then J denotes cross-correlated noise!).

Discrete time

® Zero-order hold (ZOH) sampling assuming the input is piecewise constant:

c(t+T)=eTa(t)+ fOTeATBu(t +T —7)dr
= AT 2(t) + foTeAT dr Bu(t).
-~ SR
F G
¢ First order hold (FOH) sampling assuming the input is piecewise linear, is
another option.
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Sampling Formulas  (2/2)
¢ Bilinear transformation (BIL) assumes band-limited input

2A—1 4

where A is the delay operator, Ax(t) = z(t + T'), which yields

M = (I,, — T/24)~1
F = M(I,, +T/2A)

G=T/2MB
H=CM
J=D+HG.
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Sampling of Nonlinear Models

There are two options:

® Discretized linearization (general):
1. Linearize:

A=V, a(zr,u) B=V,a(x,u) C =V, c(z,u) D =V, c(z,u)

2. Discretize (sample): F =47, G = [,/ ¢A"dr B, H=C, and J = D

® Linearized discretization (best, if possible!):
1. Discretize (sample nonlinear):

t+T
z(t+T) = f(:c(t)u(t)) =z(t) + /t a(z(r),u(r)) dr

2. Linearize: F =V, f(xk,ux) and G =V, f(zk, ur)

8/33

LINKOPING
II.“ UNIVERSITY

TSRT14 Lecture 5

Sampling of State Noise

Different solutions exist, they are all approximations except in the linear case:

Gustaf Hendeby Spring 2024 9/33

® v, is white noise such that its total influence during one sample interval is TQ
(alternative (12.14d) in the book):

Qa=TQ

® 1y, is a discrete white noise sequence with variance T'Q). That is, we assume that the
noise enters immediately after a sample time, so z(t + T') = f(z(t) + v(t))
(alternative (12.14e) in the book):

Q. = TGQRG™

Recommendation

In practice simple solutions works well, but remember to scale with T'!
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Motion Models

Continuous time (physical) and discrete time counterparts

Gustaf Hendeby Spring 2024

¢ Kinematic models: Do not attempt to model forces, but are ‘Black-box’
multi-purpose models.
m Translation kinematics describes position, often based on F' = ma.
m Rotational kinematics describes orientation.
m Rigid body kinematics combines translational and rotational kinematics.
m Constrained kinematics. Coordinated turns (circular path motion).

e Application specific force models

¢ Gray-box models Parameters § must be calibrated (estimated, identified) from
data.
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Translational Motion with n Integrators
Translational kinematics models in nD, where p(t) denotes:
e Position: X (1), (X(t),Y ()", or (X(t),Y(t),Z(t))"
® Rotation: (¢) or (¢(t),9(t),1/1(t))T

The signal w(t) is process noise for a pure kinematic model and a motion input signal in

position, velocity, and acceleration, respectively, for the case of using sensed motion as
an input rather than as a measurement.

State, x Continuous time, x Discrete time, x(t + T)

p w z+Tw

p On In 0 I TL\ . . (Zr1,)
(v) <on, on)“<1n w O In ST\ Tr )Y

n

T2 T3
p On In On On, I, TI, 7In T‘In
v On On In |z+ | On |w 0n In TI, |z+ TTZ I, |w
a 0n  0n  On In On  0n  In TI,
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Different Sampled Models of Double Integrator
Models
T = Az + Bu Trr1 = Fop + Guy,
y=Czx+ Du yr = Hxy + Jug
t
State: z = p(t)
v(t)
Continuous O0n In On
A= B= C=(I,, 0, D=0,
time <0n On> <In ( )
ZOH po (B ThY g (5 H=(I,, 0,) J=0
- 0" I" - TIn - ns Yn — Un
(L. TI, _(T?I, _ 72
FOH F= <0n I > G= <Tln> H=(I,, 0,) J=21,
I, TI. Ly 2
BIL F= (n, r ) G= (%T \ H=(I., £1,) J=%1I.
s,
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Rotational Kinematics in 2D

The course, or yaw, in 2D can be modeled as integrated white noise
P(t) = w(t),

or any higher order of integration. Compare to the tables for translational kinematics
with p(t) =¥ and n = 1.
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Navigation Models
® Navigation models have access to inertial information.
® 2D orientation (course, or yaw rate) much easier than 3D orientation.
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Rotational Kinematics in 3D

Much more complicated in 3D than 2D! Could be a course in itself.

Coordinate notation for rotations of a body in local coordinate system (x,y, z) relative
to an earth fixed coordinate system:

Motion components Rotation Euler angle Angular speed

Longitudinal forward motion = Roll ¢ w®
Lateral motion y Pitch 0 wY
Vertical motion z Yaw ¢ w?
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Euler Orientation in 3D

An earth fixed vector g (for instance the gravitational force) is in the body system
oriented as g, where

Q= Q3QQy

1 0 0 cosf 0 —sinf cosyp siny 0
=|(0 «cos¢ sing 0 1 0 —sinty cosy O
0 —sing cos¢ sinf 0 cosf 0 0

( cos 6 cos 1 cos 0 sin —sind )

—_

sin ¢ sinf cos ) — cos psiny  sin @sinOsiny + cospcosty  sin ¢ cos
cos ¢sinfcosp +singsiny  cos¢psinfsiny — singpcosyy cos ¢ cosl

Note:
The result depends on the order of rotations Q;ﬁQZpr. Here, the zyz rule is used, but
there are other options.
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Euler Rotation in 3D

When the body rotate with w, the Euler angles change according to

Wy ¢ 0 0
a) = (o) @z (]~ (0
Wy 0 0 P

The dynamic equation for Euler angles can be derived from this as

¢ 1 sin(¢)tan(d) cos(¢) tan(6)\ [ws
Y] =10 cos(¢) —sin(¢) Wy
0 0 sin(¢)sec(d) cos(¢)sec(d) ) \w.

Singularities (gimbal lock) when § = 47, can cause numeric divergence!
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Unit Quaternions

® Vector representation: g = (qo,ql,q2,q3)T.

e Norm constraint of unit quaternion: [|q|| = ¢7¢q = 1.

® The quaternion can be interpreted as as an axis angle:

~( cos(3a)
7= sin(%oz)i) ’
where ¢ represents a rotation with « around the axis defined by 9, ||9]] = 1.

Pros and Cons

+ No singularity.

+ No 27 ambiguity.

— More complex and non-intuitive algebra.

— The norm must be maintained; this can be handled. by projection or as a virtual

measurement with small noise.
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Quaternion Orientation in 3D

The orientation of the vector g in body system is Qg, where

B+ad -G -4 20192 — 2q043 29092 + 2q193

Q=1 2wep+20e @G-G+3E-4d3 —20q+ 204
—2qog2 + 2q1q3 20203 + 2001 @ — @ — a3 + 43
20 +2¢3 — 1 2q1g2 — 2903 2q143 + 2902
= | 2192 + 2q0q3  2¢3 + 205 — 1 2q2q3 — 2qoqn
2q1g3 — 2g0q2  202q3 + 2q0q1 2q3 +2q% — 1
hwye
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Quaternion Rotation in 3D
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Rotation with w gives a dynamic equation for g which can be written in two equivalent
forms:

1 1
i = -S(w)g= -8
¢ = 55w =55(qw,
where
0 —wy —Wy  —Wy —q1 —q2 —g3
w 0 w —w 3 qQ —93 92
S(w) = z z v, S(q) =
() wy —w, 0 Wy (@) QB3 qo —q1
Wy Wy —Wg 0 —q2 q1 qo0
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Sampled Form of Quaternion Dynamics
The ZOH sampling formula
e +T) = #500) Ty )

actually has a closed form solution T
y sine(L Jw(®))

sin(Z||w
qt+T) = G:os(%”w(t)H)Ll + % W S(w(t))q(t)
~ 1+ 58 (w(®)))att).

The approximation coincides with Euler forward sampling approximation, and has to be
used in more complex models where, e.g., w is part of the state vector.
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Double Integrated Quaternion

(10) (=)

There is no known closed form discretized model. However, the approximate form can be
discretized using the chain rule to

<q(t+T)) ~ (I4§S(W(t)) 55(61(1?))) (Q(t))

~

w(t+T) 0354 I3 w(t)
Flt)
5w
+ ( 4 Sgﬂ](;))h) u(t).
G
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Rigid Body Kinematics

A “multi-purpose” model for all kind of navigation problems in 3D (22 states)

P 070 0 0\/p 0000

b ool 0o o]fw 0000 .
a 000 0 0 a 10o0o0|/[°Y
i [=]o 00 —1isSw) o g |+]0 000 ;;cc
o 000 0 o0f] w 010 0]\ %0
pace 000 0 0] 0010\

pevro 000 o0 0 \per 000 1

Bias states for the accelerometer and gyroscope have been added as well.
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Sensor Model for Kinematic Model

Inertial sensors (gyroscope, accelerometer, magnetometer) are used as sensors.

Y = Rla) (a0 — ) + 17 + 7, € ~ N0, RY)
Y = Rgm + b + ™, €~ N0, B),
Y = wy + B 4 B, e8° ~ (0, RE™).

Bias observable, but special calibration routines are recommended:

Stand-still detection: When ||y2°°|| =~ g and/or [[y$*"°|| ~ 0, the gyro and acc bias is
readily read off. Can decrease drift in dead-reckoning from cubic to linear.

Ellipse fitting: When "waving the sensor” over short time intervals, the gyro can be

integrated to give accurate orientation, and acc and magnetometer
measurements can be transformed to a sphere from an ellipse.
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Tracking Models

® Navigation models have access to inertial information, tracking models have not.

® Orientation mainly the direction of the velocity vector.

Course (yaw rate) critical parameter.

Less differences between the 2D and 3D cases.
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Coordinated Turns in 2D World Coordinates

Cartesian velocity

Polar velocity

X =¥ X =wcos(h)
Y=Y Y = vsin(h)
o = —wo¥ =0
oY = woX h=w
w=0 w=0
00 1 0 0 0 0 cos(h) —wsin(h) O
0 0 0 1 0 0 0 sin(h) wcos(h) O
A=]0 0 0 —w - A=1]0 0 0 0 0
00 w 0 ¥ 00 0 0 1
0 0 0 O 0 0 0 0 0 0

Xpyr =X + L sin(wT) — %(1 —cos(wT)) Xeyr=X + Zsin(<L) cos(h + <4F)
Yirr =Y + %~ (1 — cos(wT)) + % sin(wT) Yipr=Y — 2 sin(¢L)sin(h + <L)

v p = v¥ cos(wT) — vY sin(wT’)

Vi+T =V
vy = v¥ sin(wT) + v cos(wT) hitr=h+wT
Wt4+T = W Wi4+T = W
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Automotive Example: Coordinated Turns in 2D Body Coordinates

Basic motion equations

; Vg 1
= R =v. R,
2
Vg 2 p—1 i
Iy =7 = Ve R = v,
. Vg . 1 . ;
Ay = Vg — vyﬁ =V — VyU R = 0y — vy0).

can be combined to a model suitable for the sensor configuration at hand. For instance,
T = (Rlél)7 U = Vg, y:R_l
—1
&= f(z,u) +w= (%]g ) +w

is useful when speed is measured, and a vision system delivers a local estimate of
(inverse) curve radius.
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Automotive Example: virtual sensors

29/33

Longitudinal velocity, yaw rate and slip on left and right driven wheel (front wheel driven

assumed) can be computed from wheel angular speeds if the radii are known:

V3 + V4 w3Tr3 + Warq

Vg = 9 = 9 3
: W3T3 — W4Ty
=22 "%
B
w1r war2
s1 = -1, so= -1,
U1 v2

vr = v/(1+ AR-1B) 4 (RIL)2,

v2 = v/(1 - AR-1B)2 4 (R-IL)2,

II LINKOPING
@ UNIVERSITY

TSRT14 Lecture 5 Gustaf Hendeby Spring 2024 28 /33
Automotive Example: wheel speed sensor
Each tooth passing the sensor (electromagnetic or
. — Ideal Toothed wheel
Hall) gives a pulse. The number n of clock cycles | Unideal Toothed Wheel
between a number m of teeth are registered within
each sample interval.
(t) 27 2 m
Wil ) = = .
Ncog(tk - tkfl) Ncoch n
Problems:
Angle and time quantization. Synchronization. Angle
. Sensor
offsets § in sensor teeth.
i
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Automotive Example: geometry

The formulas are based on geometry, the relation 1/1 = v, R~! and notation below.
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Automotive Example: odometry

Odometry is based on the virtual sensors
m _ w3r3 +wqrq

-
2
wgry _
= ym 2 waTa
=Y GwsTs 1
B w1 e +1

and the model ,
e =10+ [ Yrdr,
e = o /0 i dr

t
X = Xo +/ v¥ cos(¢r) dr,
0

t
Y: =Y +/ vy sin(¢r) dr.
0

to dead-reckon the wheel speeds to a relative position in the global frame.
The position (X¢(rs,r4), Yi(r3,74)) depends on the values of wheel radii r3 and r4.
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Further sources of error come from wheel slip in longitudinal and lateral direction. More

sensors needed for navigation.
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Summary

LINKOPING
UNIVERSITY

TSRT14 Lecture 5 Gustaf Hendeby

Summary Lecture 5

® Standard models in global coordinates:

m Translation p\™ = w?.
h

m 2D orientation for heading h{™ = wh.
m Coordinated turn model

X = ’l)X
0% = —wo¥
w=0.

¢ Standard models in local coordinates (z,y,v):

m Odometry and dead reckoning for (z,y,1))

t

X = Xo+ / ) vy cos(r) dr

0
t .
e = o +/ Py dr.
0

m Force models for (@Aay,az, s )
m 3D orientation ¢ = 1S(w)q = 25(g)w.

Spring 2024

t
Y: =Y +/ vy sin(¢r) dr
0
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