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Lecture 5: sensor and motion models

Whiteboard:

• Principles and some examples

Slides:

• Sampling formulas

• Noise models
• Standard motion models

Position as integrated velocity, acceleration, . . . , in nD.
Orientation as integrated angular speed in 2D and 3D.

• Odometry

TSRT14 Lecture 5 Gustaf Hendeby Spring 2024 2 / 33

Lecture 4: summary
• Detection problems as hypothesis tests:

H0 : y = e,

H1 : y = x̄+ e = h(x) + e.

• Neyman-Pearson’s lemma: T (y) = pe
(
y − h(x0)

)
/pe(y) maximizes PD for given

PFA (best ROC curve).
• In general case

T̄ (y) = 2 log pe
(
y − h(x̂ml)

)
− 2 log pe(y) ∼ χ2

nx

(
x0,T I(x0)x0

)
.

• Bayes optimal filter
p(xk|y1:k) ∝ pek

(
yk − h(xk)

)
p(xk|y1:k−1)

p(xk+1|y1:k) =
∫
pvk

(
xk+1 − f(xk)

)
p(xk|y1:k) dxk.

• Intuitive work flow of nonlinear filter:
MU: estimation from yk = h(xk) + ek and fusion with x̂k|k−1.
TU: nonlinear transformation z = f(xk) and diffusion from xk−1 = zk + vk.

Modeling and Motion Models

gustaf.hendeby@liu.se
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Chapters 12–14 Overview

• Chapter 12: Principles and methods

Principles for deriving discrete time models from continuous time ones
Discretized-linearization
Linearized-discretization
Calibration

• Chapter 13: Motion models

Kinematics
Rotations
Vehicle models
Examples

• Chapter 14: Sensor models

Techniques
Examples
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Modeling

First problem:
Physics give continuous time model, filters require (linear or nonlinear) discrete time
model:

Classification Nonlinear Linear
Continuous time ẋ = a(x, u) + v ẋ= Ax+Bu+ v

y = c(x, u) + e y= Cx+Du+ e

Discrete time xk+1= f(x, u) + v̄ xk+1 = Fx+Gu+ v̄
y = h(x, u) + e y = Hx+ Ju+ e
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Sampling Formulas (1/2)
Linear time-invariant (LTI) state-space model:

Continuous time

ẋ = Ax+Bu

y = Cx+Du

Discrete time

xk+1 = Fxk +Guk

yk = Hxk + Juk

u is either input or process noise (then J denotes cross-correlated noise!).

• Zero-order hold (ZOH) sampling assuming the input is piecewise constant:

x(t+ T ) = eATx(t) +
∫ T
0 e

AτBu(t+ T − τ) dτ

= eAT︸︷︷︸
F

x(t) +
∫ T
0 e

Aτ dτ B︸ ︷︷ ︸
G

u(t).

• First order hold (FOH) sampling assuming the input is piecewise linear, is
another option.
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Sampling Formulas (2/2)

• Bilinear transformation (BIL) assumes band-limited input

2

T

∆− 1

∆ + 1
x(t) ≈ d

dtx(t) = Ax+Bu,

where ∆ is the delay operator, ∆x(t) = x(t+ T ), which yields

M = (Inx − T/2A)−1

F =M(Inx + T/2A)

G = T/2MB

H = CM

J = D +HG.
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Sampling of Nonlinear Models

There are two options:
• Discretized linearization (general):

1. Linearize:

A = ∇x a(x, u) B = ∇u a(x, u) C = ∇x c(x, u) D = ∇u c(x, u)

2. Discretize (sample): F = eAT , G =
∫ T

0
eAτ dτ B, H = C, and J = D

• Linearized discretization (best, if possible!):

1. Discretize (sample nonlinear):

x(t+ T ) = f
(
x(t), u(t)

)
= x(t) +

∫ t+T

t

a
(
x(τ), u(τ)

)
dτ

2. Linearize: F = ∇x f(xk, uk) and G = ∇u f(xk, uk)
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Sampling of State Noise
Different solutions exist, they are all approximations except in the linear case:

• vt is white noise such that its total influence during one sample interval is TQ
(alternative (12.14d) in the book):

Q̄d = TQ

• vt is a discrete white noise sequence with variance TQ. That is, we assume that the
noise enters immediately after a sample time, so x(t+ T ) = f

(
x(t) + v(t)

)
(alternative (12.14e) in the book):

Q̄e = TGQGT

Recommendation

In practice simple solutions works well, but remember to scale with T !
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Motion Models
Continuous time (physical) and discrete time counterparts

ẋ(t) = a(x(t), u(t), w(t); θ)

x(t+ T ) = f(x(t), u(t), w(t); θ, T ).

• Kinematic models: Do not attempt to model forces, but are ‘Black-box’
multi-purpose models.

Translation kinematics describes position, often based on F = ma.
Rotational kinematics describes orientation.
Rigid body kinematics combines translational and rotational kinematics.
Constrained kinematics. Coordinated turns (circular path motion).

• Application specific force models

• Gray-box models Parameters θ must be calibrated (estimated, identified) from
data.
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Translational Motion with n Integrators
Translational kinematics models in nD, where p(t) denotes:

• Position: X(t),
(
X(t), Y (t)

)T
, or

(
X(t), Y (t), Z(t)

)T
• Rotation: ψ(t) or

(
ϕ(t), θ(t), ψ(t)

)T
The signal w(t) is process noise for a pure kinematic model and a motion input signal in
position, velocity, and acceleration, respectively, for the case of using sensed motion as
an input rather than as a measurement.

State, x Continuous time, ẋ Discrete time, x(t+T)
p w x+ Tw(
p
v

) (
0n In
0n 0n

)
x+

(
0n
In

)
w

(
In TIn
0n In

)
x+

(
T2

2
In

TIn

)
wpv

a

 0n In 0n
0n 0n In
0n 0n 0n

x+

0n
0n
In

w
In TIn

T2

2
In

0n In TIn
0n 0n In

x+

T3

6
In

T2

2
In

TIn

w
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Different Sampled Models of Double Integrator

Models

ẋ = Ax+Bu xk+1 = Fxk +Guk

y = Cx+Du yk = Hxk + Juk

State: x =

(
p(t)
v(t)

)
Continuous

time
A=

(
0n In
0n 0n

)
B=

(
0n
In

)
C = (In, 0n) D= 0n

ZOH F =

(
In TIn
0n In

)
G=

(
T2

2
In

TIn

)
H = (In, 0n) J = 0n

FOH F =

(
In TIn
0n In

)
G=

(
T 2In
TIn

)
H = (In, 0n) J = T2

6
In

BIL F =

(
In TIn
0n In

)
G=

(
T2

4
In

T
2
In

)
H =

(
In,

T
2
In

)
J = T2

2
In
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Navigation Models

• Navigation models have access to inertial information.

• 2D orientation (course, or yaw rate) much easier than 3D orientation.
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Rotational Kinematics in 2D

The course, or yaw, in 2D can be modeled as integrated white noise

ψ̇(t) = w(t),

or any higher order of integration. Compare to the tables for translational kinematics
with p(t) = ψ and n = 1.
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Rotational Kinematics in 3D

Much more complicated in 3D than 2D! Could be a course in itself.
Coordinate notation for rotations of a body in local coordinate system (x, y, z) relative
to an earth fixed coordinate system:

Motion components Rotation Euler angle Angular speed
Longitudinal forward motion x Roll ϕ ωx

Lateral motion y Pitch θ ωy

Vertical motion z Yaw ψ ωz



TSRT14 Lecture 5 Gustaf Hendeby Spring 2024 16 / 33

Euler Orientation in 3D
An earth fixed vector g (for instance the gravitational force) is in the body system
oriented as Qg, where

Q = QxϕQ
y
θQ

z
ψ

=

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


=

 cos θ cosψ cos θ sinψ − sin θ
sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ sinϕ cos θ
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cosϕ cos θ

.
Note:

The result depends on the order of rotations QxϕQ
y
θQ

z
ψ. Here, the xyz rule is used, but

there are other options.
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Euler Rotation in 3D

When the body rotate with ω, the Euler angles change according toωxωy
ωz

 =

ϕ̇0
0

+Qxϕ

0

θ̇
0

+QxϕQ
y
θ

0
0

ψ̇

 .

The dynamic equation for Euler angles can be derived from this asϕ̇ψ̇
θ̇

 =

1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) sec(θ) cos(ϕ) sec(θ)

ωxωy
ωz

 .

Singularities (gimbal lock) when θ = ±π
2 , can cause numeric divergence!

TSRT14 Lecture 5 Gustaf Hendeby Spring 2024 18 / 33

Unit Quaternions
• Vector representation: q = (q0, q1, q2, q3)T .
• Norm constraint of unit quaternion: ∥q∥ = qT q = 1.
• The quaternion can be interpreted as as an axis angle:

q =

(
cos(12α)
sin(12α)v̂

)
,

where q represents a rotation with α around the axis defined by v̂, ∥v̂∥ = 1.

Pros and Cons

+ No singularity.
+ No 2π ambiguity.
– More complex and non-intuitive algebra.
– The norm must be maintained; this can be handled. by projection or as a virtual

measurement with small noise.
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Quaternion Orientation in 3D

The orientation of the vector g in body system is Qg, where

Q =

q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q0q2 + 2q1q3
2q0q3 + 2q1q2 q20 − q21 + q22 − q23 −2q0q1 + 2q2q3
−2q0q2 + 2q1q3 2q2q3 + 2q0q1 q20 − q21 − q22 + q23


=

2q20 + 2q21 − 1 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q20 + 2q22 − 1 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q20 + 2q23 − 1

 .
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Quaternion Rotation in 3D

Rotation with ω gives a dynamic equation for q which can be written in two equivalent
forms:

q̇ =
1

2
S(ω)q =

1

2
S̄(q)ω,

where

S(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 , S̄(q) =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 .
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Sampled Form of Quaternion Dynamics

The ZOH sampling formula

q(t+ T ) = e
1
2
S
(
ω(t)

)
T q(t)

actually has a closed form solution

q(t+ T ) =

(
cos(T2 ∥ω(t)∥)I4 +

T
2

sinc(
T
2 ∥ω(t)∥)︷ ︸︸ ︷

sin(T2 ∥ω(t)∥)
T
2 ∥ω(t)∥

S
(
ω(t)

))
q(t)

≈
(
I4 +

T
2 S

(
ω(t)

))
q(t).

The approximation coincides with Euler forward sampling approximation, and has to be
used in more complex models where, e.g., ω is part of the state vector.
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Double Integrated Quaternion(
q̇(t)
ω̇(t)

)
=

(
1
2S(ω(t))q(t)

w(t)

)
.

There is no known closed form discretized model. However, the approximate form can be
discretized using the chain rule to(

q(t+ T )
ω(t+ T )

)
≈

(
I4
T
2 S

(
ω(t)

)
T
2 S̄

(
q(t)

)
03×4 I3

)
︸ ︷︷ ︸

F (t)

(
q(t)
ω(t)

)

+

(
T 3

4 S
(
ω(t)

)
I4

TI3

)
︸ ︷︷ ︸

G(t)

v(t).
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Rigid Body Kinematics

A “multi-purpose” model for all kind of navigation problems in 3D (22 states)

ṗ
v̇
ȧ
q̇
ω̇

ḃacc

ḃgyro


=



0 I 0 0 0
0 0 I 0 0
0 0 0 0 0
0 0 0 −1

2S(ω) 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





p
v
a
q
ω
bacc

bgyro


+



0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




va

vω

vacc

vgyro

 .

Bias states for the accelerometer and gyroscope have been added as well.
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Sensor Model for Kinematic Model

Inertial sensors (gyroscope, accelerometer, magnetometer) are used as sensors.

yacct = R(qt)(at − g) + bacct + eacct , eacct ∼ N (0, Racc
t ),

ymag
t = R(qt)m+ bmag

t + emag
t , emag

t ∼ N (0, Rmag
t ),

ygyrot = ωt + bgyrot + egyrot , egyrot ∼ N (0, Rgyro
t ).

Bias observable, but special calibration routines are recommended:

Stand-still detection: When ∥yacct ∥ ≈ g and/or ∥ygyrot ∥ ≈ 0, the gyro and acc bias is
readily read off. Can decrease drift in dead-reckoning from cubic to linear.

Ellipse fitting: When “waving the sensor” over short time intervals, the gyro can be
integrated to give accurate orientation, and acc and magnetometer
measurements can be transformed to a sphere from an ellipse.
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Tracking Models

• Navigation models have access to inertial information, tracking models have not.

• Orientation mainly the direction of the velocity vector.

• Course (yaw rate) critical parameter.

• Less differences between the 2D and 3D cases.
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Coordinated Turns in 2D World Coordinates
Cartesian velocity Polar velocity

Ẋ = vX Ẋ = v cos(h)

Ẏ = vY Ẏ = v sin(h)
v̇X = −ωvY v̇= 0

v̇Y = ωvX ḣ= ω
ω̇= 0 ω̇= 0

A=


0 0 1 0 0
0 0 0 1 0
0 0 0 −ω −vY
0 0 ω 0 vX

0 0 0 0 0

 A=


0 0 cos(h) −v sin(h) 0
0 0 sin(h) v cos(h) 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0


Xt+T = X + vX

ω
sin(ωT )− vY

ω
(1− cos(ωT )) Xt+T = X + 2v

ω
sin(ωT

2
) cos(h+ ωT

2
)

Yt+T = Y + vX

ω
(1− cos(ωT )) + vY

ω
sin(ωT ) Yt+T = Y − 2v

ω
sin(ωT

2
) sin(h+ ωT

2
)

vXt+T = vX cos(ωT )− vY sin(ωT ) vt+T = v
vYt+T = vX sin(ωT ) + vY cos(ωT ) ht+T = h+ ωT
ωt+T = ω ωt+T = ω
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Automotive Example: Coordinated Turns in 2D Body Coordinates
Basic motion equations

ψ̇ =
vx
R

= vxR
−1,

ay =
v2x
R

= v2xR
−1 = vxψ̇,

ax = v̇x − vy
vx
R

= v̇x − vyvxR
−1 = v̇x − vyψ̇.

can be combined to a model suitable for the sensor configuration at hand. For instance,

x =

(
ψ
R−1

)
, u = vx, y = R−1

ẋ = f(x, u) + w =

(
vxR

−1

0

)
+ w

is useful when speed is measured, and a vision system delivers a local estimate of
(inverse) curve radius.
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Automotive Example: wheel speed sensor

Each tooth passing the sensor (electromagnetic or
Hall) gives a pulse. The number n of clock cycles
between a number m of teeth are registered within
each sample interval.

ω(tk) =
2π

Ncog(tk − tk−1)
=

2π

NcogTc

m

n
.

Problems:
Angle and time quantization. Synchronization. Angle
offsets δ in sensor teeth.

Sensor

α

δ
i

Ideal Toothed wheel

Unideal Toothed Wheel
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Automotive Example: virtual sensors

Longitudinal velocity, yaw rate and slip on left and right driven wheel (front wheel driven
assumed) can be computed from wheel angular speeds if the radii are known:

vx =
v3 + v4

2
=
ω3r3 + ω4r4

2
,

Ψ̇ =
ω3r3 − ω4r4

B
,

s1 =
ω1r1
v1

− 1, s2 =
ω2r2
v2

− 1,

v1 = vx

√
(1 + 1

2R
−1B)2 + (R−1L)2,

v2 = vx

√
(1− 1

2R
−1B)2 + (R−1L)2.
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Automotive Example: geometry
The formulas are based on geometry, the relation ψ̇ = vxR

−1 and notation below.

L

B

1
R

2
R

4
R

3
R

2
δ

2
α 2

v

ψ

2
ω

1
ω

3
ω

4
ω
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Automotive Example: odometry
Odometry is based on the virtual sensors

vmx =
ω3r3 + ω4r4

2

ψ̇m = vmx
2

B

ω3
ω4

r3
r4

− 1
ω3
ω4

r3
r4

+ 1
.

and the model
ψt = ψ0 +

∫ t

0
ψ̇τ dτ,

Xt = X0 +

∫ t

0
vxτ cos(ψτ ) dτ,

Yt = Y0 +

∫ t

0
vxτ sin(ψτ ) dτ.

to dead-reckon the wheel speeds to a relative position in the global frame.
The position (Xt(r3, r4), Yt(r3, r4)) depends on the values of wheel radii r3 and r4.
Further sources of error come from wheel slip in longitudinal and lateral direction. More
sensors needed for navigation.



Summary
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Summary Lecture 5
• Standard models in global coordinates:

Translation p
(m)
t = wp

t .
2D orientation for heading h

(m)
t = wh

t .
Coordinated turn model

Ẋ = vX Ẏ = vY

v̇X = −ωvY v̇Y = ωvX

ω̇ = 0.

• Standard models in local coordinates (x, y, ψ):
Odometry and dead reckoning for (x, y, ψ)

Xt = X0 +

∫ t

0
vxτ cos(ψτ ) dτ Yt = Y0 +

∫ t

0
vxτ sin(ψτ ) dτ

ψt = ψ0 +

∫ t

0
ψ̇τ dτ.

Force models for (ψ̇, ay, ax, . . . ).
3D orientation q̇ = 1

2S(ω)q =
1
2 S̄(q)ω.


