TSRT14: Sensor Fusion Lecture 5

- Sensor and motion models

Gustaf Hendeby

gustaf.hendeby@liu.se

Lecture 5: sensor and motion models Whiteboard: • Principles and some examples Slides: • Sampling formulas • Noise models • Standard motion models • Position as integrated velocity, acceleration, ..., in *n*D. • Orientation as integrated angular speed in 2D and 3D.

Gustaf Hendeby

Spring 2024

1/33

• Odometry

TSRT14 Lecture 5

TSRT14 Lecture 5 Gustaf Hendeby Spring 2024 2/33 Lecture 4: summary • Detection problems as hypothesis tests: $H_0: \mathbf{y} = \mathbf{e},$ $H_1: \mathbf{y} = \bar{x} + \mathbf{e} = \mathbf{h}(x) + \mathbf{e}.$ • Neyman-Pearson's lemma: $T(y) = p_e(y - h(x^0))/p_e(y)$ maximizes P_D for given P_{FA} (best ROC curve). Modeling and Motion Models • In general case $\bar{T}(y) = 2\log p_{\mathbf{e}}(y - \mathbf{h}(\hat{x}^{\mathrm{ML}})) - 2\log p_{\mathbf{e}}(y) \sim \chi^{2}_{n_{\pi}}(x^{0,T}\mathcal{I}(x^{0})x^{0}).$ • Bayes optimal filter $p(x_k|y_{1:k}) \propto p_{e_k} \big(y_k - h(x_k)\big) p(x_k|y_{1:k-1})$ $p(x_{k+1}|y_{1:k}) = \int p_{v_k} (x_{k+1} - f(x_k)) p(x_k|y_{1:k}) \, dx_k.$ • Intuitive work flow of nonlinear filter: • MU: estimation from $y_k = h(x_k) + e_k$ and fusion with $\hat{x}_{k|k-1}$. TU: nonlinear transformation $z = f(x_k)$ and diffusion from $x_{k-1} = z_k + v_k$.

TSRT14	Lecture	5

Gustaf Hendeby

Spring 2024

6/33

Chapters 12–14 Overview

- Chapter 12: Principles and methods
 - Principles for deriving discrete time models from continuous time ones
 - Discretized-linearization
 - Linearized-discretization
 - Calibration
- Chapter 13: Motion models
 - Kinematics
 - Rotations
 - Vehicle models
 - Examples
- Chapter 14: Sensor models
 - Techniques
 - Examples

TSRT14 Lecture 5

TSRT14 Lecture 5

Gustaf Hendeby

Spring 2024 5 / 33

Modeling

First problem:

Physics give continuous time model, filters require (linear or nonlinear) discrete time model:

Classification	Nonlinear	Linear
Continuous time	$\dot{x} = a(x, u) + v$	$\dot{x} = Ax + Bu + v$
	y = c(x, u) + e	y = Cx + Du + e
Discrete time	$x_{k+1} = f(x, u) + \bar{v}$	$x_{k+1} = Fx + Gu + \bar{v}$
	y = h(x, u) + e	y = Hx + Ju + e

Sampling Formulas (1/2) Linear time-invariant (LTI) state-space model: Continuous time $\dot{x} = Ax + Bu$ y = Cx + Du u is either input or process noise (then *J* denotes cross-correlated noise!). • Zero-order hold (ZOH) sampling assuming the input is piecewise constant: $x(t + T) = e^{AT}x(t) + \int_0^T e^{A\tau}Bu(t + T - \tau) d\tau$ $= \underbrace{e^{AT}}_F x(t) + \underbrace{\int_0^T e^{A\tau} d\tau B}_G u(t).$ • First order hold (FOH) sampling assuming the input is piecewise linear, is another option.

Gustaf Hendeby

TSRT14 Lecture 5 Gustaf Hendeby Spring 2024 7/33 Sampling Formulas (2/2) • Bilinear transformation (BIL) assumes band-limited input $\frac{2}{T}\frac{\Delta-1}{\Delta+1}x(t) \approx \frac{d}{dt}x(t) = Ax + Bu,$ where Δ is the delay operator, $\Delta x(t) = x(t+T)$, which yields $M = (I_{n_x} - T/2A)^{-1}$ $F = M(I_{n_x} + T/2A)$ G = T/2MB H = CM J = D + HG.

Gustaf Hendeby

Spring 2024 8 / 33

Sampling of Nonlinear Models

There are two options:

• Discretized linearization (general):

1. Linearize:

$$A = \nabla_x a(x, u) \qquad B = \nabla_u a(x, u) \qquad C = \nabla_x c(x, u) \qquad D = \nabla_u c(x, u)$$

2. Discretize (sample):
$$F = e^{AT}$$
, $G = \int_0^T e^{A\tau} d\tau B$, $H = C$, and $J = D$

• Linearized discretization (best, if possible!):

1. Discretize (sample nonlinear):

$$x(t+T) = f(x(t), u(t)) = x(t) + \int_{t}^{t+T} a(x(\tau), u(\tau)) d\tau$$

2. Linearize: $F = \nabla_x f(x_k, u_k)$ and $G = \nabla_u f(x_k, u_k)$

Spring 2024 9 / 33

Spring 2024

11/33

Sampling of State Noise

Different solutions exist, they are all approximations except in the linear case:

Gustaf Hendeby

• v_t is white noise such that its total influence during one sample interval is TQ (alternative (12.14d) in the book):

 $\bar{Q}_d = TQ$

• v_t is a discrete white noise sequence with variance TQ. That is, we assume that the noise enters immediately after a sample time, so x(t + T) = f(x(t) + v(t)) (alternative (12.14e) in the book):

 $\bar{Q}_e = T G Q G^T$

Recommendation

In practice simple solutions works well, but remember to scale with T!

TSRT14 Lecture 5

TSRT14 Lecture 5

Gustaf Hendeby

Spring 2024 10 / 33

Motion Models

Continuous time (physical) and discrete time counterparts

$$\dot{x}(t) = a(x(t), u(t), w(t); \theta)$$
$$x(t+T) = f(x(t), u(t), w(t); \theta, T).$$

- **Kinematic models**: Do not attempt to model forces, but are 'Black-box' multi-purpose models.
 - Translation kinematics describes position, often based on F = ma.
 - Rotational kinematics describes orientation.
 - Rigid body kinematics combines translational and rotational kinematics.
 - Constrained kinematics. Coordinated turns (circular path motion).
- Application specific force models
- **Gray-box models** Parameters θ must be calibrated (estimated, identified) from data.

Translational Motion with *n* Integrators Translational kinematics models in *n*D, where p(t) denotes: • Position: X(t), $(X(t), Y(t))^T$, or $(X(t), Y(t), Z(t))^T$ • Rotation: $\psi(t)$ or $(\phi(t), \theta(t), \psi(t))^T$ The signal w(t) is process noise for a pure kinematic model and a motion input signal in position, velocity, and acceleration, respectively, for the case of using sensed motion as an input rather than as a measurement. $\underbrace{\frac{\text{State, x} \quad \text{Continuous time, } \times \quad \text{Discrete time, } x(t + T)}{w}}_{w + Tw}$

Gustaf Hendeby

TSRT14 Lecture 5		G	ustaf Hendeby		Spring 2024	12 / 33	TSRT14 Lecture 5
Different	Sampled	Models of Do	ouble Integr	ator			Navigation Mode
	Mo	odels					
	Sta	$\dot{x} = Ax + Bu$ $y = Cx + Du$ $\text{te:} x = \begin{pmatrix} p(t) \\ (u) \end{pmatrix}$	$x_{k+1} = x_{k+1} = y_k =$	$Fx_k + Gu_k$ $Hx_k + Ju_k$			 Navigation model
		v(t)					 2D orientation
	Continuous time	$A = \begin{pmatrix} 0_n & I_n \\ 0_n & 0_n \end{pmatrix}$	$B = \begin{pmatrix} 0_n \\ I_n \end{pmatrix}$	$C = (I_n, \ 0_n)$	$D = 0_n$		
	ZOH	$F = \begin{pmatrix} I_n & TI_n \\ 0_n & I_n \end{pmatrix}$	$G = \begin{pmatrix} \frac{T^2}{2} I_n \\ TI_n \end{pmatrix}$	$H = (I_n, \ 0_n)$	$J = 0_n$		
	FOH	$F = \begin{pmatrix} I_n & TI_n \\ 0_n & I_n \end{pmatrix}$	$G = \begin{pmatrix} T^2 I_n \\ T I_n \end{pmatrix}$	$H = (I_n, \ 0_n)$	$J = \frac{T^2}{6} I_n$		
	BIL	$F = \begin{pmatrix} I_n & TI_n \\ 0 & I \end{pmatrix}$	$G = \begin{pmatrix} \frac{T^2}{4} I_n \\ \frac{T}{2} I \end{pmatrix}$	$H = \left(I_n, \ \frac{T}{2}I_n\right)$	$J = \frac{T^2}{2} I_n$		
	ING SITY						

TSRT14 Lecture 5	Gustaf Hendeby	Spring 2024	14 / 33
Rotational Kinematic	cs in 2D		
The course or vow in 2	D can be modeled as integrated white	noise	
The course, or yaw, in 2	D can be modeled as integrated write	noise	
	$\dot{\psi}(t)=w(t),$		
or any higher order of in with $p(t) = \psi$ and $n =$	tegration. Compare to the tables for tr 1.	anslational kinematics	
			

Rotational	Kinematics in 3D			
Much mor	e complicated in 3D than 2D!	Could be a course in	itself.	
Coordinate	e notation for rotations of a be	ody in local coordinat	e system (x, y, z) r	relative
to an earth	n fixed coordinate system:	-		
	Motion components	Rotation Euler angle	Angular speed	
	Longitudinal forward motion x	Roll ϕ	ω^x	
	Lateral motion y	Pitch θ	ω^y	
		V	$(u)^{z}$	
	Vertical motion z	raw ψ	8	
	Vertical motion z	Yaw ψ		
	Vertical motion z	Yaw ψ		
	Vertical motion z	Yaw ψ		
	Vertical motion z	Yaw ψ		
	Vertical motion z	raw ψ		
	Vertical motion z	Yaw ψ		

Spring 2024 16 / 33

Spring 2024

18 / 33

Euler Orientation in 3D

An earth fixed vector ${\bf g}$ (for instance the gravitational force) is in the body system oriented as $Q{\bf g},$ where

$$\begin{split} Q &= Q_{\phi}^{*} Q_{\theta}^{y} Q_{\psi}^{*} \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \cos\theta\cos\psi & \cos\theta\sin\psi & -\sin\theta \\ \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi & \sin\phi\cos\theta \\ \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi & \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi & \cos\phi\cos\theta \end{pmatrix}. \end{split}$$

Note:

The result depends on the order of rotations $Q^x_\phi Q^y_\theta Q^z_\psi$. Here, the xyz rule is used, but there are other options.

TSRT14 Lecture 5

Spring 2024 17 / 33

Euler Rotation in 3D

When the body rotate with $\boldsymbol{\omega},$ the Euler angles change according to

 $\begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} = \begin{pmatrix} \dot{\phi} \\ 0 \\ 0 \end{pmatrix} + Q^x_{\phi} \begin{pmatrix} 0 \\ \dot{\theta} \\ 0 \end{pmatrix} + Q^x_{\phi} Q^y_{\theta} \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix}.$

The dynamic equation for Euler angles can be derived from this as

$$\begin{pmatrix} \dot{\phi} \\ \dot{\psi} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} 1 & \sin(\phi) \tan(\theta) & \cos(\phi) \tan(\theta) \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) \sec(\theta) & \cos(\phi) \sec(\theta) \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}.$$

Singularities (gimbal lock) when $\theta = \pm \frac{\pi}{2}$, can cause numeric divergence!

TSRT14 Lecture 5

Gustaf Hendeby

Unit Quaternions

- Vector representation: $q = (q^0, q^1, q^2, q^3)^T$.
- Norm constraint of unit quaternion: $||q|| = q^T q = 1$.
- The quaternion can be interpreted as as an axis angle:

$$q = \begin{pmatrix} \cos(\frac{1}{2}\alpha)\\ \sin(\frac{1}{2}\alpha)\hat{v} \end{pmatrix},$$

where q represents a rotation with α around the axis defined by $\hat{v}, \, \|\hat{v}\| = 1.$

Pros and Cons

- + No singularity.
- + No 2π ambiguity.
- More complex and non-intuitive algebra.
- The norm must be maintained; this can be handled. by projection or as a virtual measurement with small noise.

TSRT14 Lecture 5 Gustaf Hendeby Spring 2024 19/33 Quaternion Orientation in 3D The orientation of the vector g in body system is Qg, where $Q = \begin{pmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2q_1q_2 - 2q_0q_3 & 2q_0q_2 + 2q_1q_3 \\ 2q_0q_3 + 2q_1q_2 & q_0^2 - q_1^2 + q_2^2 - q_3^2 & -2q_0q_1 + 2q_2q_3 \\ -2q_0q_2 + 2q_1q_3 & 2q_2q_3 + 2q_0q_1 & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{pmatrix}$ $= \begin{pmatrix} 2q_0^2 + 2q_1^2 - 1 & 2q_1q_2 - 2q_0q_3 & 2q_1q_3 + 2q_0q_2 \\ 2q_1q_2 + 2q_0q_3 & 2q_0^2 + 2q_2^2 - 1 & 2q_2q_3 - 2q_0q_1 \\ 2q_1q_3 - 2q_0q_2 & 2q_2q_3 + 2q_0q_1 & 2q_0^2 + 2q_3^2 - 1 \end{pmatrix}.$

TSRT14 Lecture 5

Gustaf Hendeby

Spring 2024 20 / 33

Spring 2024

22 / 33

Quaternion Rotation in 3D

Rotation with ω gives a dynamic equation for q which can be written in two equivalent forms:

$$\dot{q} = \frac{1}{2}S(\omega)q = \frac{1}{2}\bar{S}(q)\omega,$$

where

$$S(\omega) = \begin{pmatrix} 0 & -\omega_x & -\omega_y & -\omega_z \\ \omega_x & 0 & \omega_z & -\omega_y \\ \omega_y & -\omega_z & 0 & \omega_x \\ \omega_z & \omega_y & -\omega_x & 0 \end{pmatrix}, \qquad \bar{S}(q) = \begin{pmatrix} -q_1 & -q_2 & -q_3 \\ q_0 & -q_3 & q_2 \\ q_3 & q_0 & -q_1 \\ -q_2 & q_1 & q_0 \end{pmatrix}.$$

TSRT14 Lecture 5

Spring 2024

21/33

Sampled Form of Quaternion Dynamics

The ZOH sampling formula

$$q(t+T) = e^{\frac{1}{2}S\left(\omega(t)\right)T}q(t)$$

 $\operatorname{sinc}(\frac{T}{2} \| \omega(t) \|)$

Gustaf Hendeby

actually has a closed form solution

$$q(t+T) = \left(\cos(\frac{T}{2} \|\omega(t)\|)I_4 + \frac{T}{2} \underbrace{\frac{\sin(\frac{T}{2} \|\omega(t)\|)}{\frac{T}{2} \|\omega(t)\|}}_{\approx \left(I_4 + \frac{T}{2}S(\omega(t))\right)q(t).$$

The approximation coincides with Euler forward sampling approximation, and has to be used in more complex models where, *e.g.*, ω is part of the state vector.

TSRT14 Lecture 5 Gustaf Hendeby
Double Integrated Quaternion

$$\begin{pmatrix} \dot{q}(t) \\ \dot{\omega}(t) \end{pmatrix} = \begin{pmatrix} \frac{1}{2}S(\omega(t))q(t) \\ w(t) \end{pmatrix}$$

There is no known closed form discretized model. However, the approximate form can be discretized using the chain rule to

$$\begin{pmatrix} q(t+T)\\ \omega(t+T) \end{pmatrix} \approx \underbrace{\begin{pmatrix} I_4 \frac{T}{2} S(\omega(t)) & \frac{T}{2} \bar{S}(q(t))\\ 0_{3\times 4} & I_3 \end{pmatrix}}_{F(t)} \begin{pmatrix} q(t)\\ \omega(t) \end{pmatrix} + \underbrace{\begin{pmatrix} \frac{T^3}{4} S(\omega(t)) I_4\\ TI_3 \end{pmatrix}}_{G(t)} v(t).$$

TSRT14	Lecture	5

Gustaf Hendeby

Spring 2024 24 / 33

Sensor Model for Kinematic Model

Inertial sensors (gyroscope, accelerometer, magnetometer) are used as sensors.

$y_t^{\text{acc}} = R(q_t)(a_t - \mathbf{g}) + b_t^{\text{acc}} + e_t^{\text{acc}},$
$y_t^{\text{mag}} = R(q_t)\mathbf{m} + b_t^{\text{mag}} + e_t^{\text{mag}},$
$y_t^{\text{gyro}} = \omega_t + b_t^{\text{gyro}} + e_t^{\text{gyro}},$

$$\begin{split} e_t^{\texttt{acc}} &\sim \mathcal{N}(0, R_t^{\texttt{acc}}), \\ e_t^{\texttt{mag}} &\sim \mathcal{N}(0, R_t^{\texttt{mag}}), \\ e_t^{\texttt{gyro}} &\sim \mathcal{N}(0, R_t^{\texttt{gyro}}). \end{split}$$

Bias observable, but special calibration routines are recommended:

Stand-still detection: When $\|y_t^{acc}\| \approx \mathbf{g}$ and/or $\|y_t^{gyro}\| \approx 0$, the gyro and acc bias is readily read off. Can decrease drift in dead-reckoning from cubic to linear.

Ellipse fitting: When "waving the sensor" over short time intervals, the gyro can be integrated to give accurate orientation, and acc and magnetometer measurements can be transformed to a sphere from an ellipse.

TSRT14 Lecture 5	Gustaf Hendeby	Spring 2024	25 / 3
Tracking Models			
• Novination model		1 · · · · · · · · · · · · · · · · · · ·	
Navigation models	s have access to inertial information, tr	acking models have not.	
 Orientation mainly 	y the direction of the velocity vector.		
 Course (yaw rate) 	critical parameter.		
 Less differences be 	etween the 2D and 3D cases.		

TSRT14 Lecture 5	Gustaf Hendeby	Spring 2024	26 / 33
Coordinated Turns in 2D We	orld Coordinates		
Cartesian velocity	Polar velocity		
$\dot{X} = v^X$	$\dot{X} = v \cos(h)$		
$\dot{Y} = v^Y$	$\dot{Y} = v \sin(h)$		
$\dot{v}^X = -\omega v^Y$	$\dot{v} = 0$		
$\dot{v}^Y = \omega v^X$	$\dot{h} = \omega$		
$\dot{\omega} = 0$	$\dot{\omega} = 0$		
$(0 \ 0 \ 1 \ 0 \ 0)$	$\begin{pmatrix} 0 & 0 & \cos(h) & -v\sin(h) \end{pmatrix}$	$) 0 \rangle$	
	$0 0 \sin(h) v\cos(h)$	0	
$A = \begin{bmatrix} 0 & 0 & 0 & -\omega & -v^Y \end{bmatrix}$	$A = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$	0	
$\begin{bmatrix} 0 & 0 & \omega & 0 & v^X \end{bmatrix}$	0 0 0 0	1	
		0/	
$X_{t+T} = X + \frac{v^{\Lambda}}{\omega}\sin(\omega T) - \frac{v^{T}}{\omega}(1 - c\sigma)$	$\operatorname{os}(\omega T)) X_{t+T} = X + \frac{2v}{\omega} \sin(\frac{\omega T}{2}) \cos(h + \frac{\omega T}{2})$	·)	
$Y_{t+T} = Y + \frac{v^X}{\omega} (1 - \cos(\omega T)) + \frac{v^Y}{\omega} s$	$\sin(\omega T) Y_{t+T} = Y - \frac{2v}{\omega}\sin(\frac{\omega T}{2})\sin(h + \frac{\omega T}{2})$)	
$v_{t+T}^X = v^X \cos(\omega T) - v^Y \sin(\omega T)$	$v_{t+T} = v$		
$v_{t+T}^Y = v^X \sin(\omega T) + v^Y \cos(\omega T)$	$h_{t+T} = h + \omega T$		
$\omega_{t+T} = \omega$	$\omega_{t+T} = \omega$		

ISR114 Lecture 5 Gustaf Hendeby		Spring 2024	27/33
Automotive Example: Coordinated Turns in	1 2D Body Coor	dinates	
Basic motion equations			
$\dot{\psi} = \frac{v_x}{R} = v_x R^{-1},$			
$a_y = \frac{v_x^2}{R} = v_x^2 R^{-1} = v_x \dot{\psi},$			
$a_x = \dot{v}_x - v_y \frac{v_x}{R} = \dot{v}_x - v_y v_x R^{-1}$	$^{-1} = \dot{v}_x - v_y \dot{\psi}.$		
can be combined to a model suitable for the sensor of	configuration at hanc	I. For instanc	e,
$x = \begin{pmatrix} \psi \\ R^{-1} \end{pmatrix}, u = v_x,$	$y = R^{-1}$		
$\dot{x} = f(x, u) + w = \begin{pmatrix} v_x R^2 \\ 0 \end{pmatrix}$)+w		

is useful when speed is measured, and a vision system delivers a local estimate of (inverse) curve radius.

TSRT14 Lecture 5

Gustaf Hendeby

Automotive Example: wheel speed sensor

Each tooth passing the sensor (electromagnetic or Hall) gives a pulse. The number n of clock cycles between a number m of teeth are registered within each sample interval.

$$\omega(t_k) = \frac{2\pi}{N_{\rm cog}(t_k - t_{k-1})} = \frac{2\pi}{N_{\rm cog}T_c}\frac{m}{n}. \label{eq:constraint}$$

Angle and time quantization. Synchronization. Angle

Spring 2024

Ideal Toothed wheel

28 / 33

Problems:

offsets δ in sensor teeth.

TSRT14 Lecture 5 Gustaf Hendeby Spring 2024 31/33 Automotive Example: odometry Odometry is based on the virtual sensors $v_x^m = \frac{\omega_3 r_3 + \omega_4 r_4}{2}$ $\dot{\psi}^m = v_x^m \frac{2}{B} \frac{\frac{\omega_3}{\omega_4} \frac{r_3}{r_4} - 1}{\frac{\omega_4}{\omega_4} \frac{r_3}{r_4} + 1}.$ and the model $\psi_t = \psi_0 + \int_0^t \dot{\psi}_\tau \, d\tau,$ $X_t = X_0 + \int_0^t v_\tau^x \cos(\psi_\tau) \, d\tau,$ $Y_t = Y_0 + \int_0^t v_\tau^x \sin(\psi_\tau) \, d\tau.$ to dead-reckon the wheel speeds to a relative position in the global frame.

The position $(X_t(r_3, r_4), Y_t(r_3, r_4))$ depends on the values of wheel radii r_3 and r_4 . Further sources of error come from wheel slip in longitudinal and lateral direction. More sensors needed for navigation.

can be computed from wheel angular speeds if the radii are know

$$\begin{aligned} v_x &= \frac{v_3 + v_4}{2} = \frac{\omega_3 r_3 + \omega_4 r_4}{2}, \\ \dot{\Psi} &= \frac{\omega_3 r_3 - \omega_4 r_4}{B}, \\ s_1 &= \frac{\omega_1 r_1}{v_1} - 1, \quad s_2 = \frac{\omega_2 r_2}{v_2} - 1, \\ v_1 &= v_x \sqrt{(1 + \frac{1}{2}R^{-1}B)^2 + (R^{-1}L)^2}, \\ v_2 &= v_x \sqrt{(1 - \frac{1}{2}R^{-1}B)^2 + (R^{-1}L)^2}. \end{aligned}$$

TSRT14 Lecture 5

Spring 2024 29 / 33

Automotive Example: virtual sensors

Longitudinal velocity, yaw rate and slip on left and right driven wheel (front wheel driven assumed) can be computed from wheel angular speeds **if** the radii are known:

Gustaf Hendeby

