TSRT14: Sensor Fusion

Lecture 5

- Sensor and motion models

Gustaf Hendeby
gustaf.hendeby@liu.se
1.0

LINKÖPING
UNIVERSITY

Lecture 5: sensor and motion models

Whiteboard:

- Principles and some examples

Slides:

- Sampling formulas
- Noise models
- Standard motion models
- Position as integrated velocity, acceleration, ... in $n \mathrm{D}$.
- Orientation as integrated angular speed in 2D and 3D.
- Odometry

Chapters 12-14 Overview

- Chapter 12: Principles and methods
- Principles for deriving discrete time models from continuous time ones
- Discretized-linearization
- Linearized-discretization
- Calibration
- Chapter 13: Motion models
- Kinematics
- Rotations
- Vehicle models
- Examples
- Chapter 14: Sensor models
- Techniques
- Examples

1.U UNVEDRSTM

SRT14 Lecture 5

First problem:
Physics give continuous time model, filters require (linear or nonlinear) discrete time model:

Classification	Nonlinear	Linear
Continuous time	$\dot{x}=a(x, u)+v$	$\dot{x}=A x+B u+v$
	$y=c(x, u)+e$	$y=C x+D u+e$
Discrete time	$x_{k+1}=f(x, u)+\bar{v}$	$x_{k+1}=F x+G u+\bar{v}$
	$y=h(x, u)+e$	$y=H x+J u+e$

1.U UNKํ.

Gustaf Hendeby
Sampling Formulas (2/2)

- Bilinear transformation (BIL) assumes band-limited input

$$
\frac{2}{T} \frac{\Delta-1}{\Delta+1} x(t) \approx \frac{d}{d t} x(t)=A x+B u,
$$

where Δ is the delay operator, $\Delta x(t)=x(t+T)$, which yields

$$
\begin{aligned}
M & =\left(I_{n_{x}}-T / 2 A\right)^{-1} \\
F & =M\left(I_{n_{x}}+T / 2 A\right) \\
G & =T / 2 M B \\
H & =C M \\
J & =D+H G .
\end{aligned}
$$

Sampling of Nonlinear Models

There are two options:

- Discretized linearization (general):

1. Linearize:

$$
A=\nabla_{x} a(x, u) \quad B=\nabla_{u} a(x, u) \quad C=\nabla_{x} c(x, u) \quad D=\nabla_{u} c(x, u)
$$

2. Discretize (sample): $F=e^{A T}, G=\int_{0}^{T} e^{A \tau} d \tau B, H=C$, and $J=D$

- Linearized discretization (best, if possible!):

1. Discretize (sample nonlinear):

$$
x(t+T)=f(x(t), u(t))=x(t)+\int_{t}^{t+T} a(x(\tau), u(\tau)) d \tau
$$

2. Linearize: $F=\nabla_{x} f\left(x_{k}, u_{k}\right)$ and $G=\nabla_{u} f\left(x_{k}, u_{k}\right)$

Sampling of State Noise

Different solutions exist, they are all approximations except in the linear case:

- v_{t} is white noise such that its total influence during one sample interval is $T Q$ (alternative (12.14d) in the book):

$$
\bar{Q}_{d}=T Q
$$

- v_{t} is a discrete white noise sequence with variance $T Q$. That is, we assume that the noise enters immediately after a sample time, so $x(t+T)=f(x(t)+v(t))$ (alternative (12.14e) in the book):

$$
\bar{Q}_{e}=T G Q G^{T}
$$

Recommendation

In practice simple solutions works well, but remember to scale with T !

1. $\mathbf{U}^{\text {undemen }}$

TSRT14 Lecture 5

Gustaf Hendeby

Translational Motion with n Integrators

Translational kinematics models in $n \mathrm{D}$, where $p(t)$ denotes:

- Position: $X(t),(X(t), Y(t))^{T}$, or $(X(t), Y(t), Z(t))^{T}$
- Rotation: $\psi(t)$ or $(\phi(t), \theta(t), \psi(t))^{T}$

The signal $w(t)$ is process noise for a pure kinematic model and a motion input signal in position, velocity, and acceleration, respectively, for the case of using sensed motion as an input rather than as a measurement.

State, \mathbf{x}	Continuous time, $\dot{\mathbf{x}}$	Discrete time, $\mathbf{x}(\mathbf{t}+\mathbf{T})$
p	w	$x+T w$
$\binom{p}{v}$	$\left(\begin{array}{cc}0_{n} & I_{n} \\ 0_{n} & 0_{n}\end{array}\right) x+\binom{0_{n}}{I_{n}} w$	$\left(\begin{array}{cc}I_{n} & T I_{n} \\ 0_{n} & I_{n}\end{array}\right) x+\binom{\frac{T^{2}}{2} I_{n}}{T I_{n}} w$
$\left(\begin{array}{c}p \\ v \\ a\end{array}\right)$	$\left(\begin{array}{ccc}0_{n} & I_{n} & 0_{n} \\ 0_{n} & 0_{n} & I_{n} \\ 0_{n} & 0_{n} & 0_{n}\end{array}\right) x+\left(\begin{array}{c}0_{n} \\ 0_{n} \\ I_{n}\end{array}\right) w$	$\left(\begin{array}{ccc}I_{n} & T I_{n} & \frac{T^{2}}{2} I_{n} \\ 0_{n} & I_{n} & T I_{n} \\ 0_{n} & 0_{n} & I_{n}\end{array}\right) x+\left(\begin{array}{c}\frac{T^{3}}{6} I_{n} \\ \frac{T^{2}}{2} I_{n} \\ T I_{n}\end{array}\right) w$

TSRT14 Lecture 5			taf Hendeby		Spring 2024
Different Sampled Models of Double Integrator					
Models					
		$\begin{aligned} \dot{x} & =A x+B u \\ y & =C x+D u \end{aligned}$	$\begin{aligned} x_{k+1} & = \\ y_{k} & = \end{aligned}$	$\begin{aligned} & F x_{k}+G u_{k} \\ & H x_{k}+J u_{k} \end{aligned}$	
State: $\quad x=\binom{p(t)}{v(t)}$					
	Continuous time	$A=\left(\begin{array}{ll}0_{n} & I_{n} \\ 0_{n} & 0_{n}\end{array}\right)$	$B=\binom{0_{n}}{I_{n}}$	$C=\left(I_{n}, 0_{n}\right)$	$D=0_{n}$
	ZOH	$F=\left(\begin{array}{cc}I_{n} & T I_{n} \\ 0_{n} & I_{n}\end{array}\right)$	$G=\binom{\frac{T^{2}}{2} I_{n}}{T I_{n}}$	$H=\left(I_{n}, 0_{n}\right)$	$J=0_{n}$
	FOH	$F=\left(\begin{array}{cc}I_{n} & T I_{n} \\ 0_{n} & I_{n}\end{array}\right)$	$G=\binom{T^{2} I_{n}}{T I_{n}}$	$H=\left(I_{n}, 0_{n}\right)$	$J=\frac{T^{2}}{6} I_{n}$
	BIL	$F=\left(\begin{array}{cc}I_{n} & T I_{n} \\ \mathrm{n} & I_{\ldots}\end{array}\right)$	$G=\binom{\frac{T^{2}}{4} I_{n}}{\underline{\underline{T}} \boldsymbol{I}}$	$H=\left(I_{n}, \frac{T}{2} I_{n}\right)$	$J=\frac{T^{2}}{2} I_{n}$

Navigation Models

- Navigation models have access to inertial information
- 2D orientation (course, or yaw rate) much easier than 3D orientation.

|.U UNNKOPRING

TSRT14 Lecture 5 Gustaf Hendeby \quad Spring 2024	15/33

Rotational Kinematics in 3D

Much more complicated in 3D than 2D! Could be a course in itself
Coordinate notation for rotations of a body in local coordinate system (x, y, z) relative to an earth fixed coordinate system:

Motion components	Rotation Euler angle	Angular speed
Longitudinal forward motion x	Roll ϕ	ω^{x}
Lateral motion y	Pitch θ	ω^{y}
Vertical motion z	Yaw ψ	ω^{z}

Euler Orientation in 3D

An earth fixed vector g (for instance the gravitational force) is in the body system oriented as $Q \mathbf{g}$, where

$$
\begin{aligned}
Q & =Q_{\phi}^{x} Q_{\theta}^{y} Q_{\psi}^{z} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\cos \theta \cos \psi & \cos \theta \sin \psi & -\sin \theta \\
\sin \phi \sin \theta \cos \psi-\cos \phi \sin \psi & \sin \phi \sin \theta \sin \psi+\cos \phi \cos \psi & \sin \phi \cos \theta \\
\cos \phi \sin \theta \cos \psi+\sin \phi \sin \psi & \cos \phi \sin \theta \sin \psi-\sin \phi \cos \psi & \cos \phi \cos \theta
\end{array}\right) .
\end{aligned}
$$

Note:

The result depends on the order of rotations $Q_{\phi}^{x} Q_{\theta}^{y} Q_{\psi}^{z}$. Here, the $x y z$ rule is used, but there are other options.

1.0

Euler Rotation in 3D

When the body rotate with ω, the Euler angles change according to

$$
\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)=\left(\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right)+Q_{\phi}^{x}\left(\begin{array}{l}
0 \\
\dot{\theta} \\
0
\end{array}\right)+Q_{\phi}^{x} Q_{\theta}^{y}\left(\begin{array}{c}
0 \\
0 \\
\dot{\psi}
\end{array}\right) .
$$

The dynamic equation for Euler angles can be derived from this as

$$
\left(\begin{array}{l}
\dot{\phi} \\
\dot{\psi} \\
\dot{\theta}
\end{array}\right)=\left(\begin{array}{ccc}
1 & \sin (\phi) \tan (\theta) & \cos (\phi) \tan (\theta) \\
0 & \cos (\phi) & -\sin (\phi) \\
0 & \sin (\phi) \sec (\theta) & \cos (\phi) \sec (\theta)
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) .
$$

Singularities (gimbal lock) when $\theta= \pm \frac{\pi}{2}$, can cause numeric divergence!

TSRT14 Lecture 5

Unit Quaternions

- Vector representation: $q=\left(q^{0}, q^{1}, q^{2}, q^{3}\right)^{T}$.
- Norm constraint of unit quaternion: $\|q\|=q^{T} q=1$.
- The quaternion can be interpreted as as an axis angle:

$$
q=\binom{\cos \left(\frac{1}{2} \alpha\right)}{\sin \left(\frac{1}{2} \alpha\right) \hat{v}}
$$

where q represents a rotation with α around the axis defined by $\hat{v},\|\hat{v}\|=1$.

Pros and Cons

+ No singularity.
+ No 2π ambiguity.
- More complex and non-intuitive algebra.
- The norm must be maintained; this can be handled. by projection or as a virtual measurement with small noise.

Quaternion Orientation in 3D

The orientation of the vector \mathbf{g} in body system is $Q \mathbf{g}$, where

$$
\begin{aligned}
Q=\left(\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2 q_{1} q_{2}-2 q_{0} q_{3} & 2 q_{0} q_{2}+2 q_{1} q_{3} \\
2 q_{0} q_{3}+2 q_{1} q_{2} & q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2} & -2 q_{0} q_{1}+2 q_{2} q_{3} \\
-2 q_{0} q_{2}+2 q_{1} q_{3} & 2 q_{2} q_{3}+2 q_{0} q_{1} & q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}
\end{array}\right) \\
=\left(\begin{array}{ccc}
2 q_{0}^{2}+2 q_{1}^{2}-1 & 2 q_{1} q_{2}-2 q_{0} q_{3} & 2 q_{1} q_{3}+2 q_{0} q_{2} \\
2 q_{1} q_{2}+2 q_{0} q_{3} & 2 q_{0}^{2}+2 q_{2}^{2}-1 & 2 q_{2} q_{3}-2 q_{0} q_{1} \\
2 q_{1} q_{3}-2 q_{0} q_{2} & 2 q_{2} q_{3}+2 q_{0} q_{1} & 2 q_{0}^{2}+2 q_{3}^{2}-1
\end{array}\right) .
\end{aligned}
$$

Quaternion Rotation in 3D

里

Rotation with ω gives a dynamic equation for q which can be written in two equivalent forms:

$$
\dot{q}=\frac{1}{2} S(\omega) q=\frac{1}{2} \bar{S}(q) \omega,
$$

where

$$
S(\omega)=\left(\begin{array}{cccc}
0 & -\omega_{x} & -\omega_{y} & -\omega_{z} \\
\omega_{x} & 0 & \omega_{z} & -\omega_{y} \\
\omega_{y} & -\omega_{z} & 0 & \omega_{x} \\
\omega_{z} & \omega_{y} & -\omega_{x} & 0
\end{array}\right), \quad \bar{S}(q)=\left(\begin{array}{ccc}
-q_{1} & -q_{2} & -q_{3} \\
q_{0} & -q_{3} & q_{2} \\
q_{3} & q_{0} & -q_{1} \\
-q_{2} & q_{1} & q_{0}
\end{array}\right)
$$

Spring $2024 \quad 20 / 33$

Gustaf Hendeby

TSRT14 Lecture 5

Gustaf Hendeby

Spring $2024 \quad 21 / 33$

Sampled Form of Quaternion Dynamics

The ZOH sampling formula

$$
q(t+T)=e^{\frac{1}{2} S(\omega(t)) T} q(t)
$$

actually has a closed form solution

$$
\begin{aligned}
& q(t+T) \\
& =(\cos \left(\frac{T}{2}\|\omega(t)\|\right) I_{4}+\frac{T}{2} \overbrace{\frac{\sin \left(\frac{T}{2}\|\omega(t)\|\right)}{\frac{T}{2}\|\omega(t)\|}}^{\operatorname{sinc}\left(\frac{T}{2}\|\omega(t)\|\right)} \\
& \\
& \\
& \approx\left(I_{4}+\frac{T}{2} S(\omega(t))\right) q(t) .
\end{aligned}
$$

The approximation coincides with Euler forward sampling approximation, and has to be used in more complex models where, e.g., ω is part of the state vector.

\section*{| TSRT14 Lecture 5 | Gustaf Hendeby | Spring 2024 |
| :--- | :--- | :--- |}

Double Integrated Quaternion

$$
\binom{\dot{q}(t)}{\dot{\omega}(t)}=\binom{\frac{1}{2} S(\omega(t)) q(t)}{w(t)} .
$$

There is no known closed form discretized model. However, the approximate form can be discretized using the chain rule to

$$
\begin{aligned}
\binom{q(t+T)}{\omega(t+T)} \approx & \underbrace{\left(\begin{array}{cc}
I_{4} \frac{T}{2} S(\omega(t)) & \frac{T}{2} \bar{S}(q(t)) \\
0_{3 \times 4} & I_{3}
\end{array}\right)}_{F(t)}\binom{q(t)}{\omega(t)} \\
& +\underbrace{\binom{\frac{T^{3}}{4} S(\omega(t)) I_{4}}{T I_{3}}}_{G(t)} v(t) .
\end{aligned}
$$

TSRT14 Lecture 5
Gustaf Hendeby
Spring 2024
23/33
Rigid Body Kinematics

A "multi-purpose" model for all kind of navigation problems in 3D (22 states)

$$
\left(\begin{array}{c}
\dot{p} \\
\dot{v} \\
\dot{a} \\
\dot{q} \\
\dot{\omega} \\
\dot{b^{\text {acc }}} \\
\dot{b}^{\text {gyro }}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & I & 0 & 0 & 0 \\
0 & 0 & I & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{2} S(\omega) & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
p \\
v \\
a \\
q \\
\omega \\
b^{\text {acc }} \\
b^{\text {gyro }}
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v^{a} \\
v^{\omega} \\
v^{\text {acc }} \\
v^{\text {gyro }}
\end{array}\right) .
$$

Bias states for the accelerometer and gyroscope have been added as well.

1. $\mathbf{U}^{\text {mimpenc }}$

Sensor Model for Kinematic Model

Inertial sensors (gyroscope, accelerometer, magnetometer) are used as sensors.

$$
\begin{aligned}
& y_{t}^{\text {acc }}=R\left(q_{t}\right)\left(a_{t}-\mathbf{g}\right)+b_{t}^{\text {acc }}+e_{t}^{\text {acc }}, \\
& e_{t}^{\mathrm{acc}} \sim \mathcal{N}\left(0, R_{t}^{\mathrm{acc}}\right), \\
& y_{t}^{\mathrm{mag}}=R\left(q_{t}\right) \mathbf{m}+b_{t}^{\mathrm{mag}}+e_{t}^{\mathrm{mag}} \text {, } \\
& e_{t}^{\mathrm{mag}} \sim \mathcal{N}\left(0, R_{t}^{\mathrm{mag}}\right), \\
& y_{t}^{\text {gyro }}=\omega_{t}+b_{t}^{\text {gyro }}+e_{t}^{\text {gyro }}, \\
& e_{t}^{\text {gyro }} \sim \mathcal{N}\left(0, R_{t}^{\text {gyro }}\right) .
\end{aligned}
$$

Bias observable, but special calibration routines are recommended:
Stand-still detection: When $\left\|y_{t}^{\text {acc }}\right\| \approx \mathbf{g}$ and/or $\left\|y_{t}^{\text {gyro }}\right\| \approx 0$, the gyro and acc bias is readily read off. Can decrease drift in dead-reckoning from cubic to linear.
Ellipse fitting: When "waving the sensor" over short time intervals, the gyro can be integrated to give accurate orientation, and acc and magnetometer measurements can be transformed to a sphere from an ellipse.

1.U UNVERSRTM

Tracking Models

- Navigation models have access to inertial information, tracking models have not.
- Orientation mainly the direction of the velocity vector.
- Course (yaw rate) critical parameter
- Less differences between the 2D and 3D cases.

1. $\mathbf{U}_{\text {Lincepens }}^{\text {Lin }}$

TSRT14 Lecture 5
Automotive Example: Coordinated Turns in 2D Body Coordinates
Basic motion equations

$$
\begin{aligned}
\dot{\psi} & =\frac{v_{x}}{R}=v_{x} R^{-1}, \\
a_{y} & =\frac{v_{x}^{2}}{R}=v_{x}^{2} R^{-1}=v_{x} \dot{\psi}, \\
a_{x} & =\dot{v}_{x}-v_{y} \frac{v_{x}}{R}=\dot{v}_{x}-v_{y} v_{x} R^{-1}=\dot{v}_{x}-v_{y} \dot{\psi} .
\end{aligned}
$$

can be combined to a model suitable for the sensor configuration at hand. For instance,

$$
\begin{aligned}
& x=\binom{\psi}{R^{-1}}, \quad u=v_{x}, \quad y=R^{-1} \\
& \dot{x}=f(x, u)+w=\binom{v_{x} R^{-1}}{0}+w
\end{aligned}
$$

is useful when speed is measured, and a vision system delivers a local estimate of (inverse) curve radius.

Automotive Example: wheel speed sensor

Each tooth passing the sensor (electromagnetic or Hall) gives a pulse. The number n of clock cycles between a number m of teeth are registered within each sample interval.

$$
\omega\left(t_{k}\right)=\frac{2 \pi}{N_{\operatorname{cog}}\left(t_{k}-t_{k-1}\right)}=\frac{2 \pi}{N_{\operatorname{cog}} T_{c}} \frac{m}{n} .
$$

Problems:

Angle and time quantization. Synchronization. Angle offsets δ in sensor teeth.

$1 . \mathbf{U}^{\text {Limpenin }}$

SRT14 Lecture 5

Automotive Example: virtual sensors

Longitudinal velocity, yaw rate and slip on left and right driven wheel (front wheel driven assumed) can be computed from wheel angular speeds if the radii are known:

$$
\begin{aligned}
v_{x} & =\frac{v_{3}+v_{4}}{2}=\frac{\omega_{3} r_{3}+\omega_{4} r_{4}}{2}, \\
\dot{\Psi} & =\frac{\omega_{3} r_{3}-\omega_{4} r_{4}}{B}, \\
s_{1} & =\frac{\omega_{1} r_{1}}{v_{1}}-1, \quad s_{2}=\frac{\omega_{2} r_{2}}{v_{2}}-1, \\
v_{1} & =v_{x} \sqrt{\left(1+\frac{1}{2} R^{-1} B\right)^{2}+\left(R^{-1} L\right)^{2}} \\
v_{2} & =v_{x} \sqrt{\left(1-\frac{1}{2} R^{-1} B\right)^{2}+\left(R^{-1} L\right)^{2}}
\end{aligned}
$$

|.U UNNKOPRING

Automotive Example: odometry
Odometry is based on the virtual sensors

$$
\begin{aligned}
& v_{x}^{m}=\frac{\omega_{3} r_{3}+\omega_{4} r_{4}}{2} \\
& \dot{\psi}^{m}=v_{x}^{m} \frac{2}{B} \frac{\frac{\omega_{3}}{\omega_{4}} \frac{r_{3}}{r_{4}}-1}{\frac{\omega_{3}}{\omega_{4}} \frac{r_{3}}{r_{4}}+1} .
\end{aligned}
$$

and the model

$$
\begin{aligned}
\psi_{t} & =\psi_{0}+\int_{0}^{t} \dot{\psi}_{\tau} d \tau, \\
X_{t} & =X_{0}+\int_{0}^{t} v_{\tau}^{x} \cos \left(\psi_{\tau}\right) d \tau \\
Y_{t} & =Y_{0}+\int_{0}^{t} v_{\tau}^{x} \sin \left(\psi_{\tau}\right) d \tau
\end{aligned}
$$

to dead-reckon the wheel speeds to a relative position in the global frame.
The position $\left(X_{t}\left(r_{3}, r_{4}\right), Y_{t}\left(r_{3}, r_{4}\right)\right)$ depends on the values of wheel radii r_{3} and r_{4}. Further sources of error come from wheel slip in longitudinal and lateral direction. More sensors needed for navigation.
1.TV LINKÖPNG

Summary

Summary Lecture 5

- Standard models in global coordinates
- Translation $p_{t}^{(m)}=w_{t}^{p}$.
- 2D orientation for heading $h_{t}^{(m)}=w_{t}^{h}$.
- Coordinated turn model

$$
\begin{array}{rlrl}
\dot{X} & =v^{X} & \dot{Y} & =v^{Y} \\
\dot{v}^{X} & =-\omega v^{Y} & \dot{v}^{Y} & =\omega v \\
\dot{\omega} & =0 . &
\end{array}
$$

- Standard models in local coordinates (x, y, ψ).

■ Odometry and dead reckoning for (x, y, ψ)

$$
\begin{array}{lr}
X_{t}=X_{0}+\int_{0}^{t} v_{\tau}^{x} \cos \left(\psi_{\tau}\right) d \tau & Y_{t}=Y_{0}+\int_{0}^{t} v_{\tau}^{x} \sin \left(\psi_{\tau}\right) d \tau \\
\psi_{t} & =\psi_{0}+\int_{0}^{t} \dot{\psi}_{\tau} d \tau
\end{array}
$$

- Force models for $\left(\dot{\psi}, a_{y}, a_{x}, \ldots\right)$.
- 3D orientation $\dot{q}=\frac{1}{2} S(\omega) q=\frac{1}{2} \bar{S}(q) \omega$.

