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Le 6: Kalman filter (KF), approximations (EKF, UKF)

Whiteboard:
® Derivation framework for KF, EKF, UKF

Slides:
e Kalman filter summary: main equations, robustness, sensitivity,
divergence monitoring, user aspects.

® Nonlinear transforms revisited.
® Application to derivation of EKF and UKF.

® User guidelines and interpretations.
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Lecture 5: summary

® Standard models in global coordinates:

m Translation p{™ = w?
m 2D orientation for heading h(m) = wh
m Coordinated turn model
X =%
0% = —wo¥
w=0

® Standard models in local coordinates (x,y, 1))
m Odometry and dead reckoning for (z,y, )

t
X :X0+/ vy cos(1he) dt
0

t .
Pt =1/10+/ g dit
0

m Force models for (&,ay,ax,. )
m 3D orientation ¢ = 5(w)g = £5(q)w

Spring 2024

t
Y: =Y +/ UZ" Sin(l/]t)dt
0
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Chapter 7 Overview

Kalman filter

Algorithms and derivation

Practical issues

Computational aspects

Filter monitoring

The discussion and conclusions do usually apply to all nonlinear filters,
though it is more concrete in the linear Gaussian case.
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Kalman Filter (KF)

Time-varying state space model:

Tpt1 = Frap + Grog, cov(vg) = Qx
yr = Hipxp + eg, COV(ek) = Ry

Time update:

Try1e = Frp
Pyi1je = FuPy Fi + GrQiGy

Measurement update:

Bkl = Eppp1 + Popp—1 HY (HiPrg—1 HE + Rie) ™ (g — Hedpgp—1)
Py = Prjr—1 — Pop—1 Hi (He Pyp—1 Hi. + Ri) ™ Hy Pyype—1.

5/42
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KF Modifications

Auxiliary quantities: innovation &g, innovation covariance S; and Kalman gain K},

Ok = Hplpp—1
€k = Yk — HrpZpp—1 = Yx — Uk
Sk = HyPyp—1 HiL + Ry,
Ky = Pop—1 H{ (Hy Py HiY + Ri) ™' = P HE S,
Filter form
Tpp = Fe—18p—1p—1 + Ki(yp — HiFp—18p_1jk—1)
= (Fk—1 — KpHpFi—1)@p—1jp—1 + KrYr,
Predictor form
Tk = FeZrpp—1 + Fele(ye — HeZpjp—1)
= (Fy — FiKp Hy)Zgp—1 + Fe Ky

6/42
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Simulation Example

(1/2)

Create a constant velocity model, simulate and Kalman filter.

Gustaf Hendeby

r
T = 0.5;
F=[10TO; 010T; 0010; 000 1];
G = [T"2/2 0; 0 T"2/2; T 0; O TIl;
H=1[1000; 010 0];
R = 0.03*xeye(2);
m = 1ss(F, [1, H,[], GxG’, R, 1/T);
m.xlabel = {’X’, ’Y’, ’vX’, ’vY’};
m.ylabel = {’X’, ’Y’};
m.name = ’Constant_ velocity motion model’;
z = simulate(m, 20);

xhatl = kalman(m, z, ’alg’, 2, ’k’, 1); % Time
xplot2(z, xhatl, ’conf’, 90, [1 2]);
-

-varying

Spring 2024
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Simulation Example

(2/2)

Covariance illustrated as confidence ellipsoids in 2D plots or confidence bands in 1D

plots.

[xplot(z, xhatl, ’conf’, 99)

yi

y3

y4

Gustaf Hendeby

Spring 2024
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Tuning the KF

® The SNR ratio ||Q||/||R|| is the most crucial, it sets the filter speeds. Note
difference of real system and model used in the KF.

® Recommentation: fix R according to sensor specification/performance, and tune @
(motion models are anyway subjective approximations of reality).

® High SNR in the model, gives fast filter that is quick in adapting to
changes/maneuvers, but with larger uncertainty (small bias, large variance).

® Conversely, low SNR in the model, gives slow filter that is slow in adapting to
changes/maneuvers, but with small uncertainty (large bias, small variance).

® P, reflects the belief in the prior 21 ~ N (Z1)9, Fo). Possible to choose Py very large
(and #y|q arbitrary), if no prior information exists.

® Tune covariances in large steps (order of magnitudes)!
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Optimality Properties

® For a linear model, the KF provides the WLS solution.
® The KF is the best linear unbiased estimator (BLUE).

® |t is the Bayes optimal filter for linear model when xg, vk, ex are
Gaussian variables,

Try1|yk ~ N (g1 Posajr)
iy ~ N (T Pejk)
Ek ~ ./\/(0, Sk)

10/ 42
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Gustaf Hendeby Spring 2024

Robustness and Sensitivity

The following concepts are relevant for all filtering
applications, but they are most explicit for KF:

Observability is revealed indirectly by Py ;; monitor its
rank or better condition number.

Divergence tests Monitor performance measures and
restart the filter after divergence.

Outlier rejection monitor sensor observations.
Bias error incorrect model gives bias in estimates.

Sensitivity analysis uncertain model contributes to the
total covariance.

Numerical issues may give complex estimates.

11/42
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Observability

1. Snapshot observability if H has full rank. WLS can be applied to estimate x.

2. Classical observability for time-invariant and time/varying case,

H Hy_ni1
HF Hy_pioFgk_ni1
o—| HF? O = | He—n+3Fk—n+2Fp—nt1
Hpr ! H.F)_4 ~--kan+1

3. The covariance matrix Py, extends the observability condition by weighting with
the measurement noise and to forget old information according to the process noise.
Thus, (the condition number of) Py is the natural indicator of observability!
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Divergence Tests
When is sks;‘g significantly larger than its computed expected value
Sk = E(exe}) (note that e, ~ N (0, S))?

Principal reasons:

® Model errors

Sensor model errors: offsets, drifts, incorrect covariances, scaling
factor in all covariances

® Sensor errors: outliers, missing data

® Numerical issues

Solutions:
® |n the first two cases, the filter has to be redesigned.

® |n the last two cases, the filter has to be restarted.

13/42
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Outlier Rejection
Outlier rejection as a hypothesis test
Let Hy : g ~ N(O, Sk), then
T(y) = €k Sy ek ~ X,

if everything works fine, and there is no outlier. If T'(yx) > hp,,, this is
an indication of outlier, and the measurement update can be omitted. )

In the case of several sensors, each sensor ¢ should be monitored for

outliers ‘ _ .
T(y}) = (=) Si ek~ 2

k

14/42
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Sensitivity analysis: parameter uncertainty
Sensitivity analysis can be done with respect to uncertain parameters with known
covariance matrix using for instance Gauss approximation formula.
e Assume F(0),G(0), H(0),Q(6), R(A) have uncertain parameters § with E(#) = 0
and cov(6) = Py.
® The state estimate Zj, is a stochastic variable with four stochastic sources, v, ek, 1
at one hand, and 6 on the other hand.

® The law of total variance (var(X) = Evar(X|Y) + var E(X|Y")) and Gauss
approximation formula (var(h(Y)) =~ bl (Y)var(Y)(h} (Y))T) gives

. ATy, dige \©
cov(Zpk) ~ Pyp + | Pe( | >

do dé

® The gradient dZy,/df can be computed numerically by simulations.
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Numerical Issues

Some simple fixes if problem occurs:

® Assure that the covariance matrix is symmetric
P = 0.5%P + 0.5%P°.

® Use the more numerically stable Joseph's form for the measurement update of the
covariance matrix:

Py, = (I = Ky Hy) Py (I — K Hy)" + KR KL

® Assure that the covariance matrix is positive definite by setting negative eigenvalues
in P to zero or small positive values.

® Avoid singular R = 0, even for constraints.

® Dithering. Increase ) and R if needed; this can account for all kind of model errors.
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Chapter 8 Overview

Nonlinear transformations.

Details of the EKF algorithms.

Numerical methods to compute Jacobian and Hessian in the
Taylor expansion.

An alternative EKF version without the Ricatti equation.

The unscented Kalman filter (UKF).
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EKF1 and EKF2 principle

Apply TT1 and TT2, respectively, to the dynamic and observation
models. For instance,

i1 = flan) +op = f(2) + ¢'(@)(2 — 2) + 5 (2 — 2)Tg" () (x — &)

o EKF1 neglects the rest term.

e EKF2 compensates with the mean and covariance of the rest term
using £ = .

LINKOPING
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EKF1 Algorithm

Sk = h;(ik|k71)Pk|k—l(h;c(ik\k—l))T + hé(ikw—l)Rk(hé(jk\kfl))T

Kp = Pyjjo—1 (B (Erpp—1)) " Syt
ek = Yk — "M(@x|p—1,0)
Zpik = Trjp—1 + Kiek

Pyje = Prje—1 — Projo—1 (W (= 1)) T Sy PRl (Bgopgo—1) Projro—n

Epy1e = (@), 0)
Pryiik = Fr @) Pepe(Fr@rpe)) ™+ £ @) Qi (F) @)™

20/ 42
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EKF1 and EKF2 Algorithm
Sk = hy(Enk—1)Projo—1 (B (Erop—1)) " + R (@kjp—1) Rie (AL (B—1)) "
+3 [ (P o (B 1o—1) P =175 o (B — 1) Poji—1)] ;5
Ky = Py (W (@g—1)) TSy
ek = Yk — P(@kk—1,0) =3 [tr(h] , Prjr—1)],
Tk = Bjp—1 + Kieg
Pyje = Prje—1 — Projo—1 (W (= 1)) T Sy PRl (Bgopgo—1) Projro—n
+3 [tr(h;,,x(jk\kfl)Pkalh;'l,;c(ik|k71)Pk|k71)}l-j
Ergre = F @y 0) +35 [0r(f] 0 Pri)]
Prgaje = Fo @) Propre (£5 @rpe)) T + £ (@) Qe (£ (Eepie) T
+1 [tf(f{,'z(fk|k)Pk\kf}fz(i“k|k)Pk\k)]Z-j

This form of the EKF2 (as given in the book) is disregarding second order terms of the
process noise! See, e.g., my thesis for the full expressions.

20 /42
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Comments

Gustaf Hendeby Spring 2024

The EKF1, using the TT1 transformation, is obtained by letting

both Hessians f and h! be zero.

Analytic Jacobian and Hessian needed. If not available, use
numerical approximations (done in Signal and Systems Lab by
default!)

The complexity of EKF1 is as in KF n2 due to the FPFT
operation.

The complexity of EKF2 is n2 due to the FiPFjT operation for
1,0 =1,...,Nng.

Dithering is good! That is, increase @ and R from the simulated
values to account for the approximation errors.

21/42
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EKF Variations

® The standard EKF linearizes around the current state estimate.

® The linearized Kalman filter linearizes around some reference
trajectory.

® The error state Kalman filter, also known as the complementary
Kalman filter, estimates the state error T, = xj, — I with respect
to some approximate or reference trajectory. Feedforward or
feedback configurations.

linearized Kalman filter = feedforward error state Kalman filter
EKF = feedback error state Kalman filter

22/42
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Derivative-Free Algorithms

Numeric derivatives are preferred in the following cases:
® The nonlinear function is too complex.
® The derivatives are too complex functions.

® A user-friendly algorithm is desired, with as few user inputs as
possible.

This can be achieved with either numerical approximation or using
sigma points!

23 /42
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Nonlinear transformations (NLT)
Consider a second order Taylor expansion of a function z = g(z):
z=g(x) = g(@) + ¢'(3) (@ — &) + 3z — 2) " g"()(x — 7).
r(wi,g" (§))

The rest term is negligible and EKF works fine if:
® the model is almost linear
® or the SNR is high, so ||z — Z|| can be considered small.

The size of the rest term can be approximated a priori.
Note: the size may depend on the choice of state coordinates!

If the rest term is large, use either of

® the second order compensated EKF that compensates for the mean and covariance

of r(z; 2, 9"(§)) = r(w; 2, 9" (2)).
® the unscented KF (UKF).

24 /42
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TT1: first order Taylor approximation

The first order Taylor term gives a contribution to the covariance:

z~ N (2, P) =N (g(2), [9:(2) P(g;(2)) i) = N (9(2), ¢'(&) P9/ (2))")

This is sometimes called Gauss' approximation formula.

Here [A];; means element i, j in the matrix A. This is used in EKF1 (EKF with first
order Taylor expansion). Leads to a KF where nonlinear functions are approximated
with their Jacobians.

® Compare with the linear transformation rule

z = Gu, x ~ N (&, P) — 2~ N(Gi,GPG").

Note that GPGT can be written [GiPG;-F]ij, where G; denotes row ¢ of G.
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TT2: second order Taylor approximation

The second order Taylor term contributes both to the mean and covariance as follows:
x ~ N(&, P) = N(g(@)+35tr(g] (2)P))i, [9i(®)P(gj(2))"+5 tr(Pgl(2) Py} (£))]i5)

® This is used in EKF2 (EKF with second order Taylor expansion). Leads to a KF
where nonlinear functions are approximated with their Jacobians and Hessians.

e UKF tries to do this approximation numerically, without forming the Hessian ¢"(z)
explicitly. This reduces the n> complexity in [tr(ng’(aA:)Pg;’(i))]ij to nd
complexity.

LINKOPING
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MC: Monte Carlo sampling

Generate N samples, transform them, and fit a Gaussian distribution

2@ ~ N (&, P)
20 = g(z)

L0
Bz = == z
P>

N
1 i i T
P g 0 ) (0 - )

Not commonly used in nonlinear filtering, but a valid and solid approach!
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UT: the unscented transform

At first sight, similar to MC:
Generate 2n, + 1 sigma points, transform these, and fit a Gaussian distribution:

20 =3
2E) — 4 4 ”:c"‘)‘sz'/Qv 1=1,2,...,ny
20 = g(2)

B~ — 20 3 %Zm’)

2(ng + A) = (nz + )
cov(z) ~ (M+(1 0?1+ ) (0~ ER) (20~ E)”
> sy O B (9 - E@)

28 /42
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UT: design parameters

® ) is defined by A = a?(ng + k) — ng.

® « controls the spread of the sigma points and is suggested to be chosen around
1073,

® 3 compensates for the distribution, and should be chosen to 3 = 2 for Gaussian
distributions.

® x is usually chosen to zero.

® n,+ \=a’n, when k = 0.

® The weights sum to one for the mean, but sum to 2 — a? + 3 ~ 4 for the
covariance. Note also that the weights are not in [0, 1].

® The mean has a large negative weight!

® If ny + A — 0, then UT and TT2 (and hence UKF and EKF2) are identical for
ng, = 1, otherwise closely related!
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Example 1: squared norm

Squared norm of a Gaussian vector has a known distribution:
z=g(x)=zTz, z~N(0,I,)=2z~x*n).

Theoretical distribution is x?(n) with mean n and variance 2n. The mean and variance
are below summarized as a Gaussian distribution. Using 10000 Monte Carlo simulations.

n TT1 TT2 uT1 uT2 MCT

1 N(©0,00 N2 N(TL,2) 1,2)  N(1.02,2.15)

2 N(0,0)  N(2,4) N(2,2) N(2,8)  N(2.02,4.09)

3 N(0,0)  N(3,6) N (3,0) N(3,18) N (3.03,6.3)

4 N(0,0)  N(4,8) N4, —4)  N(4,32)  N(4.03,8.35)

5 N(0.0) NG NG -10) NG5 N(508104)
Theory N(0,0) N(n,2n) N(n,(3—n)n) N(n,2n%) — N(n,2n)

Conclusion: TT2 works, not the unscented transforms.
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Example 1: squared norm

Squared norm of a Gaussian vector has a known distribution:
z=g(x)=zTz, z~N(0,I,)=2z~x*n).

Theoretical distribution is x?(n) with mean n and variance 2n. The mean and variance
are below summarized as a Gaussian distribution. Using 10000 Monte Carlo simulations.

n TT1 TT2 uT1 uT2 MCT

1 N(©0,0) N(,2) N(,2) @.2)  N(1.02,2.15)

2 N(0,0)  N(2,4) N(2,2) N(2,8)  N(2.02,4.09)

3 N(0,0)  A(3,6) N(3,0) N(3,18)  N(3.03,6.3)

4 N(0,0)  N(4,8) N4, 1)  N(4,32)  N(4.03,8.35)

5 N(O.0) NGB0 NGo10)  N(,50)  N(G.08,104)
Theory N(0,0) N(n,2n) N(n,(3—n)n) N(n,2n%2) — N(n,2n)

Conclusion: TT2 works, not the unscented transforms.
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Example 2: radar

Conversion of polar measurements to Cartesian position:

) <3;1 cos(x2)>

x1 sin(z2)

X TT1 TT2
30\ (1.0 0.0 3.0 1.0 0.0 2.0 30 0.0
0.0)'\0.0 1.0 00)" 0.0 9.0 -0.0)" \0.0 100
3.0\ (1.0 0.0 2.6\ (30 —35 14\ (270 25
05)'\00 1.0 15)'\=35 7.0 05 ) {25 90
3.0\ /1.0 0.0 2.1\ (50 —4.0 2.1 9.0 0.0
08)'\0.0 1.0 2.1)'\-40 50 (2.1)’ 0.0 13.0

UT1 UT2 MCT
18) (37 00 15\ (55 00 18 25 0.0
0.0)'\0.0 29 00)" 0.0 9.0 00) ' \0.0 44
1.6\ (35 0.3 1.3\ (64 15 16\ (29 —08
09)\03 31 08)\-15 81 09) '\-08 3.9
1.3\ (3.3 04 L\ (72 -7 13\ (34 -10
1.3)'\04 33 1) \-17 72 13)'\-1.0 34
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Example 3: standard sensor networks measurements

Standard measurements:
groa(®) = ||zl = /D00, 27

gpoa () = arctan2(zq, z2),

TOA 2D: g(x) = ||| DOA: g(z) = arctan2(z2, 1)
X N([3: 0, [1,0; 0, 10]) X N([3:0],[10,0;0,1])
TT1 N(3,1) TT1 N(0,0.111)

TT2 N (4.67,6.56) TT2 N(0,0.235)
uT2 N (4.08,3.34) UT2  N(0.524,1.46)
MCT  AN(4.08,1.94) MCT  AN(0.0702,1.6)

32/42

Conclusion: UT works slightly better than TT1 and TT2. Studying RSS measurements,

Grss(T) =co —c2- 1010%10(’$H2)a

gives similar results.
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KF, EKF and UKF in one framework

Lemma 7.1 If
- G 1)) )
(Y) N (('“y) ’ (Pwy Pyy N ty)’

Then, the conditional distribution for X, given the observed Y = y, is Gaussian
distributed:

(lezy)NN(Nm"'nyP;yl(y_Ny)aPm_nypgjylpyx)

Connection to the Kalman filter

33/42

The Kalman gain is in this notation given by
Gy = B
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Kalman Filter Algorithm (1/2)

Time update: Let

o= () (o) (T

2 =2XTk4+1 = f(xk7ukavk) = g(‘i)

The transformation approximation (UT, MC, TT1, TT2) gives

2~ N(@py1jes Prsar)-

0

)

Spring 2024
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Kalman Filter Algorithm (2/2)

Measurement update: Let

TS 1)
T (i:) - <h($kifk,6k)> = 9(@)-

The transformation approximation (UT, MC, TT1, TT2) gives

Y ((531@|k1> (Plfi—l Pljﬁ@l)) .
Yklk—1) " Plg\glﬂc—l Pk?{lit—l
The measurement update is now
Ky =Py (P)
Tk = Brpp—1 + Ki(Yk — Grje—1),
Py = Prr—1 — K Py

35/42
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Comments

Gustaf Hendeby Spring 2024

The filter obtained using TT1 is equivalent to the standard EKF1.
The filter obtained using TT2 is equivalent to EKF2.
The filter obtained using UT is equivalent to UKF.

The Monte Carlo approach should be the most accurate, since it
asymptotically computes the correct first and second order
moments.

There is a freedom to mix transform approximations in the time
and measurement update.

36 /42
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Choice of Nonlinear Filter
® Depends mainly on:
(i) SNR.
(ii) the degree of nonlinearity.
(iii) the degree of non-Gaussian noise, in particular if any distribution is multi-modal (has
several local maxima).
® SNR and degree of nonlinearity is connected through the rest term, whose expected value is:
Ez —2)"g" (€)@ — &) = E(tx(s" () (@ — 8)(z — 2)") ) = (" ()P)
Small rest term requires either high SNR (small P) or almost linear functions (small f" and
h//)-
® |f the rest term is small, use EKF1.
® If the rest term is large, and the nonlinearities are essentially quadratic (example z'x) use
EKF2.
® |f the rest term is large, and the nonlinearities are not essentially quadratic try UKF.
® |f the functions are severly nonlinear or any distribution is multi-modal, consider filterbanks
or particle filter.
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Virtual Yaw Rate Sensor

® Yaw rate subject to bias, orientation error increases linearly in time.
® Wheel speeds also give a gyro, where the orientation error grows linearly in distance.
Model, with state vector zj = (&k,lﬁk,bk, Tk’i) and the measurements

Tk,
w3 k.3
2 _ W3Tnhom + W4Tnom 3 w4 T4 2
Ye = 2 Bﬂrk,3+1+ek
w4 Tk, 4

Yaw Rate

http://youtu.be/d9rzCCIBS9I
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Virtual Yaw Rate Sensor

® Yaw rate subject to bias, orientation error increases linearly in time.
® Wheel speeds also give a gyro, where the orientation error grows linearly in distance.
Model, with state vector zj = (&k,lﬁk,bk, Tk’i) and the measurements

Tk,
w3 k.3
2 _ W3Tnhom + W4Tnom 3 w4 T4 2
Ye = 2 Bﬂrk,3+1+ek
w4 Tk, 4

Yaw Rate

http://youtu.be/d9rzCCIBS9I
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Sounding Rocket

Navigation grade IMU gives accurate dead-reckoning, but drift may cause return at bad places.

GPS is restricted for high speeds and high accelerations.

Fusion of IMU and GPS when pseudo-ranges are available, with IMU support to tracking loops inside GPS.
® |Loose integration: direct fusion approach yi = pr + ek.
® Tight integration: TDOA fusion approach yi = |px — p};|/c + t + ek.

s
ht{:p://youtu.be/zRHFXfZL[J64
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MC Leaning Angle

® Headlight steering, ABS and anti-spin
systems require leaning angle.

® Gyro very expensive for this application.

® Combination of accelerometers

investigated, lateral and downward acc
worked fine in EKF.

Model, where zy, 2., a1, a2, J are constants
relating to geometry and inertias of the
motorcycle, u = vy

T = (50 90 50 ’lﬁ ¢ 6(1y 5az 5¢)T .

http://youtu.be/hT6S1FgHx0cO

ay uxry — 2yx3 + zymi tan(z1) + gsin(z1) + ze
y="h(@)=|a: | = | —uzqtan(z1) — 2z (23 + 23 tan?(z1)) + g cos(z1) + =7
%) —ai1r3 + agxi tan(z1) — uzaJ + x6
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Summary Lecture 6
Key tool for a unified derivation of KF, EKF, UKF.
X Mo Prz Py
()/) NIA/<(Ny> ’(fay sz)>
é(X|Y:y) NN(#x+nyPg7y1(y_#y),Prac—PacyPg;ylex)

The Kalman gain is in this notation given by K = nyPy*yl.
¢ In KF, P,y and P, follow from a linear Gaussian model.

® In EKF, P,y and P, can be computed from a linearized model (requires analytic

gradients).

® In EKF and UKF, P,, and P,, computed by NLT for transformation of (27, v7)7

and (27, eT)7T, respectively. No gradients required, just function evaluations.
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