TSRT14: Sensor Fusion Lecture 6

- Kalman filter (KF)
- KF approximations (EKF, UKF)

Gustaf Hendeby
gustaf.hendeby@liu.se

Le 6: Kalman filter (KF), approximations (EKF, UKF)

Whiteboard:

- Derivation framework for KF, EKF, UKF

Slides:

- Kalman filter summary: main equations, robustness, sensitivity, divergence monitoring, user aspects.
- Nonlinear transforms revisited.
- Application to derivation of EKF and UKF.
- User guidelines and interpretations.

Lecture 5: summary

- Standard models in global coordinates:
- Translation $p_{t}^{(m)}=w_{t}^{p}$
- 2D orientation for heading $h_{t}^{(m)}=w_{t}^{h}$

■ Coordinated turn model

$$
\begin{aligned}
\dot{X} & =v^{X} \\
\dot{v}^{X} & =-\omega v^{Y} \\
\dot{\omega} & =0
\end{aligned}
$$

$$
\begin{aligned}
\dot{Y} & =v^{Y} \\
\dot{v}^{Y} & =\omega v^{X}
\end{aligned}
$$

- Standard models in local coordinates (x, y, ψ)

■ Odometry and dead reckoning for (x, y, ψ)

$$
\begin{array}{ll}
X_{t}=X_{0}+\int_{0}^{t} v_{t}^{x} \cos \left(\psi_{t}\right) d t & Y_{t}=Y_{0}+\int_{0}^{t} v_{t}^{x} \sin \left(\psi_{t}\right) d t \\
\psi_{t}=\psi_{0}+\int_{0}^{t} \dot{\psi}_{t} d t &
\end{array}
$$

- Force models for $\left(\dot{\psi}, a_{y}, a_{x}, \ldots\right)$
- 3D orientation $\dot{q}=\frac{1}{2} S(\omega) q=\frac{1}{2} \bar{S}(q) \omega$

Kalman Filter (KF)

Chapter 7 Overview

Kalman filter

- Algorithms and derivation
- Practical issues
- Computational aspects
- Filter monitoring

The discussion and conclusions do usually apply to all nonlinear filters, though it is more concrete in the linear Gaussian case.

Kalman Filter (KF)

Time-varying state space model:

$$
\begin{array}{rlrl}
x_{k+1} & =F_{k} x_{k}+G_{k} v_{k}, & & \operatorname{cov}\left(v_{k}\right)=Q_{k} \\
y_{k} & =H_{k} x_{k}+e_{k}, & \operatorname{cov}\left(e_{k}\right)=R_{k}
\end{array}
$$

Time update:

$$
\begin{aligned}
\hat{x}_{k+1 \mid k} & =F_{k} \hat{x}_{k \mid k} \\
P_{k+1 \mid k} & =F_{k} P_{k \mid k} F_{k}^{T}+G_{k} Q_{k} G_{k}^{T}
\end{aligned}
$$

Measurement update:

$$
\begin{aligned}
& \hat{x}_{k \mid k}=\hat{x}_{k \mid k-1}+P_{k \mid k-1} H_{k}^{T}\left(H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k}\right)^{-1}\left(y_{k}-H_{k} \hat{x}_{k \mid k-1}\right) \\
& P_{k \mid k}=P_{k \mid k-1}-P_{k \mid k-1} H_{k}^{T}\left(H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k}\right)^{-1} H_{k} P_{k \mid k-1} .
\end{aligned}
$$

KF Modifications

Auxiliary quantities: innovation ε_{k}, innovation covariance S_{k} and Kalman gain K_{k}

$$
\begin{aligned}
\hat{y}_{k} & =H_{k} \hat{x}_{k \mid k-1} \\
\varepsilon_{k} & =y_{k}-H_{k} \hat{x}_{k \mid k-1}=y_{k}-\hat{y}_{k} \\
S_{k} & =H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k} \\
K_{k} & =P_{k \mid k-1} H_{k}^{T}\left(H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k}\right)^{-1}=P_{k \mid k-1} H_{k}^{T} S_{k}^{-1}
\end{aligned}
$$

Filter form

$$
\begin{aligned}
\hat{x}_{k \mid k} & =F_{k-1} \hat{x}_{k-1 \mid k-1}+K_{k}\left(y_{k}-H_{k} F_{k-1} \hat{x}_{k-1 \mid k-1}\right) \\
& =\left(F_{k-1}-K_{k} H_{k} F_{k-1}\right) \hat{x}_{k-1 \mid k-1}+K_{k} y_{k},
\end{aligned}
$$

Predictor form

$$
\begin{aligned}
\hat{x}_{k+1 \mid k} & =F_{k} \hat{x}_{k \mid k-1}+F_{k} K_{k}\left(y_{k}-H_{k} \hat{x}_{k \mid k-1}\right) \\
& =\left(F_{k}-F_{k} K_{k} H_{k}\right) \hat{x}_{k \mid k-1}+F_{k} K_{k} y_{k}
\end{aligned}
$$

Simulation Example (1/2)

Create a constant velocity model, simulate and Kalman filter.

```
T = 0.5;
F}=[110 T T 0; 0 1 0 T; 0 0 1 0; 0 0 0 1 1]
G = [T^2/2 0; 0 T^2/2; T 0; 0 T];
H}=[\begin{array}{lllllllll}{1}&{0}&{0}&{0;}&{0}&{1}&{0}&{0}\end{array}]
R = 0.03*eye(2);
m = lss(F, [], H,[], G*G', R, 1/T);
m.xlabel = {'X', 'Y', 'vX', 'vY'};
m.ylabel = {'X',},\mp@subsup{Y}{}{\prime}}
m.name = 'Constant\sqcupvelocity motion}\sqcupmodel';
z = simulate(m, 20);
xhat1 = kalman(m, z, 'alg', 2, 'k', 1); % Time-varying
xplot2(z, xhat1,',conf', 90, [1 2]);
```


Simulation Example (2/2)

Covariance illustrated as confidence ellipsoids in 2D plots or confidence bands in 1D plots.

Tuning the KF

- The SNR ratio $\|Q\| /\|R\|$ is the most crucial, it sets the filter speeds. Note difference of real system and model used in the KF.
- Recommentation: fix R according to sensor specification/performance, and tune Q (motion models are anyway subjective approximations of reality).
- High SNR in the model, gives fast filter that is quick in adapting to changes/maneuvers, but with larger uncertainty (small bias, large variance).
- Conversely, low SNR in the model, gives slow filter that is slow in adapting to changes/maneuvers, but with small uncertainty (large bias, small variance).
- P_{0} reflects the belief in the prior $x_{1} \sim \mathcal{N}\left(\hat{x}_{1 \mid 0}, P_{0}\right)$. Possible to choose P_{0} very large (and $\hat{x}_{1 \mid 0}$ arbitrary), if no prior information exists.
- Tune covariances in large steps (order of magnitudes)!

Optimality Properties

- For a linear model, the KF provides the WLS solution.
- The KF is the best linear unbiased estimator (BLUE).
- It is the Bayes optimal filter for linear model when x_{0}, v_{k}, e_{k} are Gaussian variables,

$$
\begin{aligned}
x_{k+1} \mid y_{1: k} & \sim \mathcal{N}\left(\hat{x}_{k+1 \mid k}, P_{k+1 \mid k}\right) \\
x_{k} \mid y_{1: k} & \sim \mathcal{N}\left(\hat{x}_{k \mid k}, P_{k \mid k}\right) \\
\varepsilon_{k} & \sim \mathcal{N}\left(0, S_{k}\right) .
\end{aligned}
$$

Robustness and Sensitivity

The following concepts are relevant for all filtering applications, but they are most explicit for KF:

- Observability is revealed indirectly by $P_{k \mid k}$; monitor its rank or better condition number.
- Divergence tests Monitor performance measures and restart the filter after divergence.
- Outlier rejection monitor sensor observations.
- Bias error incorrect model gives bias in estimates.
- Sensitivity analysis uncertain model contributes to the total covariance.
- Numerical issues may give complex estimates.

Observability

1. Snapshot observability if H_{k} has full rank. WLS can be applied to estimate x.
2. Classical observability for time-invariant and time/varying case,

$$
\mathcal{O}=\left(\begin{array}{c}
H \\
H F \\
H F^{2} \\
\vdots \\
H F^{n-1}
\end{array}\right) \quad \mathcal{O}_{k}=\left(\begin{array}{c}
H_{k-n+1} \\
H_{k-n+2} F_{k-n+1} \\
H_{k-n+3} F_{k-n+2} F_{k-n+1} \\
\vdots \\
H_{k} F_{k-1} \ldots F_{k-n+1}
\end{array}\right) .
$$

3. The covariance matrix $P_{k \mid k}$ extends the observability condition by weighting with the measurement noise and to forget old information according to the process noise. Thus, (the condition number of) $P_{k \mid k}$ is the natural indicator of observability!

Divergence Tests

When is $\varepsilon_{k} \varepsilon_{k}^{T}$ significantly larger than its computed expected value $S_{k}=\mathrm{E}\left(\varepsilon_{k} \varepsilon_{k}^{T}\right)$ (note that $\varepsilon_{k} \sim \mathcal{N}\left(0, S_{k}\right)$)?

Principal reasons:

- Model errors
- Sensor model errors: offsets, drifts, incorrect covariances, scaling factor in all covariances
- Sensor errors: outliers, missing data
- Numerical issues

Solutions:

- In the first two cases, the filter has to be redesigned.
- In the last two cases, the filter has to be restarted.

Outlier Rejection

Outlier rejection as a hypothesis test

Let $H_{0}: \varepsilon_{k} \sim \mathcal{N}\left(0, S_{k}\right)$, then

$$
T\left(y_{k}\right)=\varepsilon_{k}^{T} S_{k}^{-1} \varepsilon_{k} \sim \chi_{n_{y_{k}}}^{2}
$$

if everything works fine, and there is no outlier. If $T\left(y_{k}\right)>h_{P_{\mathrm{FA}}}$, this is an indication of outlier, and the measurement update can be omitted.

In the case of several sensors, each sensor i should be monitored for outliers

$$
T\left(y_{k}^{i}\right)=\left(\varepsilon_{k}^{i}\right)^{T} S_{k}^{-1} \varepsilon_{k}^{i} \sim \chi_{n_{y_{k}^{i}}}^{2}
$$

Sensitivity analysis: parameter uncertainty

Sensitivity analysis can be done with respect to uncertain parameters with known covariance matrix using for instance Gauss approximation formula.

- Assume $F(\theta), G(\theta), H(\theta), Q(\theta), R(\theta)$ have uncertain parameters θ with $\mathrm{E}(\theta)=\hat{\theta}$ and $\operatorname{cov}(\theta)=P_{\theta}$.
- The state estimate \hat{x}_{k} is a stochastic variable with four stochastic sources, v_{k}, e_{k}, x_{1} at one hand, and θ on the other hand.
- The law of total variance $(\operatorname{var}(X)=\mathrm{E} \operatorname{var}(X \mid Y)+\operatorname{var} \mathrm{E}(X \mid Y))$ and Gauss approximation formula $\left(\operatorname{var}(h(Y)) \approx h_{Y}^{\prime}(\bar{Y}) \operatorname{var}(Y)\left(h_{Y}^{\prime}(\bar{Y})\right)^{T}\right)$ gives

$$
\operatorname{cov}\left(\hat{x}_{k \mid k}\right) \approx P_{k \mid k}+\frac{d \hat{x}_{k \mid k}}{d \theta} P_{\theta}\left(\frac{d \hat{x}_{k \mid k}}{d \theta}\right)^{T}
$$

- The gradient $d \hat{x}_{k \mid k} / d \theta$ can be computed numerically by simulations.

Numerical Issues

Some simple fixes if problem occurs:

- Assure that the covariance matrix is symmetric

$$
P=0.5 * P+0.5 * P^{\prime}
$$

- Use the more numerically stable Joseph's form for the measurement update of the covariance matrix:

$$
P_{k \mid k}=\left(I-K_{k} H_{k}\right) P_{k \mid k-1}\left(I-K_{k} H_{k}\right)^{T}+K_{k} R_{k} K_{k}^{T} .
$$

- Assure that the covariance matrix is positive definite by setting negative eigenvalues in P to zero or small positive values.
- Avoid singular $R=0$, even for constraints.
- Dithering. Increase Q and R if needed; this can account for all kind of model errors.

Kalman Filter Approximations (EKF, UKF)

Chapter 8 Overview

- Nonlinear transformations.
- Details of the EKF algorithms.
- Numerical methods to compute Jacobian and Hessian in the Taylor expansion.
- An alternative EKF version without the Ricatti equation.
- The unscented Kalman filter (UKF).

EKF1 and EKF2 principle

Apply TT1 and TT2, respectively, to the dynamic and observation models. For instance,

$$
x_{k+1}=f\left(x_{k}\right)+v_{k}=f(\hat{x})+g^{\prime}(\hat{x})(x-\hat{x})+\frac{1}{2}(x-\hat{x})^{T} g^{\prime \prime}(\xi)(x-\hat{x}) .
$$

- EKF1 neglects the rest term.
- EKF2 compensates with the mean and covariance of the rest term using $\xi=\hat{x}$.

EKF1

Algorithm

$$
S_{k}=h_{x}^{\prime}\left(\hat{x}_{k \mid k-1}\right) P_{k \mid k-1}\left(h_{x}^{\prime}\left(\hat{x}_{k \mid k-1}\right)\right)^{T}+h_{e}^{\prime}\left(\hat{x}_{k \mid k-1}\right) R_{k}\left(h_{e}^{\prime}\left(\hat{x}_{k \mid k-1}\right)\right)^{T}
$$

$$
\begin{aligned}
K_{k} & =P_{k \mid k-1}\left(h_{x}^{\prime}\left(\hat{x}_{k \mid k-1}\right)\right)^{T} S_{k}^{-1} \\
\varepsilon_{k} & =y_{k}-h\left(\hat{x}_{k \mid k-1}, 0\right) \\
\hat{x}_{k \mid k} & =\hat{x}_{k \mid k-1}+K_{k} \varepsilon_{k} \\
P_{k \mid k} & =P_{k \mid k-1}-P_{k \mid k-1}\left(h_{x}^{\prime}\left(\hat{x}_{k \mid k-1}\right)\right)^{T} S_{k}^{-1} h_{x}^{\prime}\left(\hat{x}_{k \mid k-1}\right) P_{k \mid k-1} \\
\hat{x}_{k+1 \mid k} & =f\left(\hat{x}_{k \mid k}, 0\right) \\
P_{k+1 \mid k} & =f_{x}^{\prime}\left(\hat{x}_{k \mid k}\right) P_{k \mid k}\left(f_{x}^{\prime}\left(\hat{x}_{k \mid k}\right)\right)^{T}+f_{v}^{\prime}\left(\hat{x}_{k \mid k}\right) Q_{k}\left(f_{v}^{\prime}\left(\hat{x}_{k \mid k}\right)\right)^{T}
\end{aligned}
$$

EKF1 and EKF2 Algorithm

$$
\begin{aligned}
S_{k}= & h_{x}^{\prime}\left(\hat{x}_{k \mid k-1}\right) P_{k \mid k-1}\left(h_{x}^{\prime}\left(\hat{x}_{k \mid k-1}\right)\right)^{T}+h_{e}^{\prime}\left(\hat{x}_{k \mid k-1}\right) R_{k}\left(h_{e}^{\prime}\left(\hat{x}_{k \mid k-1}\right)\right)^{T} \\
& +\frac{1}{2}\left[\operatorname{tr}\left(h_{i, x}^{\prime \prime}\left(\hat{x}_{k \mid k-1}\right) P_{k \mid k-1} h_{j, x}^{\prime \prime}\left(\hat{x}_{k \mid k-1}\right) P_{k \mid k-1}\right)\right]_{i j} \\
K_{k}= & P_{k \mid k-1}\left(h_{x}^{\prime}\left(\hat{x}_{k \mid k-1}\right)\right)^{T} S_{k}^{-1} \\
\varepsilon_{k}= & y_{k}-h\left(\hat{x}_{k \mid k-1}, 0\right)-\frac{1}{2}\left[\operatorname{tr}\left(h_{i, x}^{\prime \prime} P_{k \mid k-1}\right)\right]_{i} \\
\hat{x}_{k \mid k}= & \hat{x}_{k \mid k-1}+K_{k} \varepsilon_{k} \\
P_{k \mid k}= & P_{k \mid k-1}-P_{k \mid k-1}\left(h_{x}^{\prime}\left(\hat{x}_{k \mid k-1}\right)\right)^{T} S_{k}^{-1} h_{x}^{\prime}\left(\hat{x}_{k \mid k-1}\right) P_{k \mid k-1} \\
& +\frac{1}{2}\left[\operatorname{tr}\left(h_{i, x}^{\prime \prime}\left(\hat{x}_{k \mid k-1}\right) P_{k \mid k-1} h_{j, x}^{\prime \prime}\left(\hat{x}_{k \mid k-1}\right) P_{k \mid k-1}\right)\right]_{i j} \\
\hat{x}_{k+1 \mid k}= & f\left(\hat{x}_{k \mid k}, 0\right)+\frac{1}{2}\left[\operatorname{tr}\left(f_{i, x}^{\prime \prime} P_{k \mid k}\right)\right]_{i} \\
P_{k+1 \mid k}= & f_{x}^{\prime}\left(\hat{x}_{k \mid k}\right) P_{k \mid k}\left(f_{x}^{\prime}\left(\hat{x}_{k \mid k}\right)\right)^{T}+f_{v}^{\prime}\left(\hat{x}_{k \mid k}\right) Q_{k}\left(f_{v}^{\prime}\left(\hat{x}_{k \mid k}\right)\right)^{T} \\
& +\frac{1}{2}\left[\operatorname{tr}\left(f_{i, x}^{\prime \prime}\left(\hat{x}_{k \mid k}\right) P_{k \mid k} f_{j, x}^{\prime \prime}\left(\hat{x}_{k \mid k}\right) P_{k \mid k}\right)\right]_{i j}
\end{aligned}
$$

NB!

This form of the EKF2 (as given in the book) is disregarding second order terms of the process noise! See, e.g., my thesis for the full expressions.

Comments

- The EKF1, using the TT1 transformation, is obtained by letting both Hessians $f_{x}^{\prime \prime}$ and $h_{x}^{\prime \prime}$ be zero.
- Analytic Jacobian and Hessian needed. If not available, use numerical approximations (done in Signal and Systems Lab by default!)
- The complexity of EKF1 is as in KF n_{x}^{3} due to the $F P F^{T}$ operation.
- The complexity of EKF2 is n_{x}^{5} due to the $F_{i} P F_{j}^{T}$ operation for $i, j=1, \ldots, n_{x}$.
- Dithering is good! That is, increase Q and R from the simulated values to account for the approximation errors.

EKF Variations

- The standard EKF linearizes around the current state estimate.
- The linearized Kalman filter linearizes around some reference trajectory.
- The error state Kalman filter, also known as the complementary Kalman filter, estimates the state error $\tilde{x}_{k}=x_{k}-\hat{x}_{k}$ with respect to some approximate or reference trajectory. Feedforward or feedback configurations.
linearized Kalman filter $=$ feedforward error state Kalman filter EKF $=$ feedback error state Kalman filter

Derivative-Free Algorithms

Numeric derivatives are preferred in the following cases:

- The nonlinear function is too complex.
- The derivatives are too complex functions.
- A user-friendly algorithm is desired, with as few user inputs as possible.

This can be achieved with either numerical approximation or using sigma points!

Nonlinear transformations (NLT)

Consider a second order Taylor expansion of a function $z=g(x)$:

$$
z=g(x)=g(\hat{x})+g^{\prime}(\hat{x})(x-\hat{x})+\underbrace{\frac{1}{2}(x-\hat{x})^{T} g^{\prime \prime}(\xi)(x-\hat{x})}_{r\left(x ; \hat{x}, g^{\prime \prime}(\xi)\right)}
$$

The rest term is negligible and EKF works fine if:

- the model is almost linear
- or the SNR is high, so $\|x-\hat{x}\|$ can be considered small.

The size of the rest term can be approximated a priori.
Note: the size may depend on the choice of state coordinates!
If the rest term is large, use either of

- the second order compensated EKF that compensates for the mean and covariance of $r\left(x ; \hat{x}, g^{\prime \prime}(\xi)\right) \approx r\left(x ; \hat{x}, g^{\prime \prime}(\hat{x})\right)$.
- the unscented KF (UKF).

TT1: first order Taylor approximation

The first order Taylor term gives a contribution to the covariance:

$$
x \sim \mathcal{N}(\hat{x}, P) \rightarrow \mathcal{N}\left(g(\hat{x}),\left[g_{i}^{\prime}(\hat{x}) P\left(g_{j}^{\prime}(\hat{x})\right)^{T}\right]_{i j}\right)=\mathcal{N}\left(g(\hat{x}), g^{\prime}(\hat{x}) P\left(g^{\prime}(\hat{x})\right)^{T}\right)
$$

- This is sometimes called Gauss' approximation formula.
- Here $[A]_{i j}$ means element i, j in the matrix A. This is used in EKF1 (EKF with first order Taylor expansion). Leads to a KF where nonlinear functions are approximated with their Jacobians.
- Compare with the linear transformation rule

$$
z=G x, \quad x \sim \mathcal{N}(\hat{x}, P) \quad \longrightarrow \quad z \sim \mathcal{N}\left(G \hat{x}, G P G^{T}\right)
$$

- Note that $G P G^{T}$ can be written $\left[G_{i} P G_{j}^{T}\right]_{i j}$, where G_{i} denotes row i of G.

TT2: second order Taylor approximation

The second order Taylor term contributes both to the mean and covariance as follows:

$$
x \sim \mathcal{N}(\hat{x}, P) \rightarrow \mathcal{N}\left(g(\hat{x})+\frac{1}{2}\left[\operatorname{tr}\left(g_{i}^{\prime \prime}(\hat{x}) P\right)\right]_{i},\left[g_{i}^{\prime}(\hat{x}) P\left(g_{j}^{\prime}(\hat{x})\right)^{T}+\frac{1}{2} \operatorname{tr}\left(P g_{i}^{\prime \prime}(\hat{x}) P g_{j}^{\prime \prime}(\hat{x})\right)\right]_{i j}\right)
$$

- This is used in EKF2 (EKF with second order Taylor expansion). Leads to a KF where nonlinear functions are approximated with their Jacobians and Hessians.
- UKF tries to do this approximation numerically, without forming the Hessian $g^{\prime \prime}(x)$ explicitly. This reduces the n_{x}^{5} complexity in $\left[\operatorname{tr}\left(P g_{i}^{\prime \prime}(\hat{x}) P g_{j}^{\prime \prime}(\hat{x})\right)\right]_{i j}$ to n_{x}^{3} complexity.

MC: Monte Carlo sampling

Generate N samples, transform them, and fit a Gaussian distribution

$$
\begin{aligned}
x^{(i)} & \sim \mathcal{N}(\hat{x}, P) \\
z^{(i)} & =g\left(x^{(i)}\right) \\
\mu_{z} & =\frac{1}{N} \sum_{i=1}^{N} z^{(i)} \\
P_{z} & =\frac{1}{N-1} \sum_{i=1}^{N}\left(z^{(i)}-\mu_{z}\right)\left(z^{(i)}-\mu_{z}\right)^{T}
\end{aligned}
$$

Not commonly used in nonlinear filtering, but a valid and solid approach!

UT: the unscented transform

At first sight, similar to MC:
Generate $2 n_{x}+1$ sigma points, transform these, and fit a Gaussian distribution:

$$
\begin{aligned}
x^{(0)}= & \hat{x} \\
x^{(\pm i)}= & \hat{x} \pm \sqrt{n_{x}+\lambda} P_{:, i}^{1 / 2}, \quad i=1,2, \ldots, n_{x} \\
z^{(i)}= & g\left(x^{(i)}\right) \\
\mathrm{E}(z) \approx & \frac{\lambda}{2\left(n_{x}+\lambda\right)} z^{(0)}+\sum_{i=-n_{x}}^{n_{x}} \frac{1}{2\left(n_{x}+\lambda\right)} z^{(i)} \\
\operatorname{cov}(z) \approx & \left(\frac{\lambda}{2\left(n_{x}+\lambda\right)}+\left(1-\alpha^{2}+\beta\right)\right)\left(z^{(0)}-\mathrm{E}(z)\right)\left(z^{(0)}-\mathrm{E}(z)\right)^{T} \\
& +\sum_{i=-n_{x}}^{n_{x}} \frac{1}{2\left(n_{x}+\lambda\right)}\left(z^{(i)}-\mathrm{E}(z)\right)\left(z^{(i)}-\mathrm{E}(z)\right)^{T}
\end{aligned}
$$

UT: design parameters

- λ is defined by $\lambda=\alpha^{2}\left(n_{x}+\kappa\right)-n_{x}$.
- α controls the spread of the sigma points and is suggested to be chosen around 10^{-3}.
- β compensates for the distribution, and should be chosen to $\beta=2$ for Gaussian distributions.
- κ is usually chosen to zero.

Note

- $n_{x}+\lambda=\alpha^{2} n_{x}$ when $\kappa=0$.
- The weights sum to one for the mean, but sum to $2-\alpha^{2}+\beta \approx 4$ for the covariance. Note also that the weights are not in $[0,1]$.
- The mean has a large negative weight!
- If $n_{x}+\lambda \rightarrow 0$, then UT and TT2 (and hence UKF and EKF2) are identical for $n_{x}=1$, otherwise closely related!

Example 1: squared norm

Squared norm of a Gaussian vector has a known distribution:

$$
z=g(x)=x^{T} x, \quad x \sim \mathcal{N}\left(0, I_{n}\right) \Rightarrow z \sim \chi^{2}(n)
$$

Theoretical distribution is $\chi^{2}(n)$ with mean n and variance $2 n$. The mean and variance are below summarized as a Gaussian distribution. Using 10000 Monte Carlo simulations.

n	TT1	TT2	UT1	UT2	MCT
1	$\mathcal{N}(0,0)$	$\mathcal{N}(1,2)$	$\mathcal{N}(1,2)$	$\mathcal{N}(1,2)$	$\mathcal{N}(1.02,2.15)$
2	$\mathcal{N}(0,0)$	$\mathcal{N}(2,4)$	$\mathcal{N}(2,2)$	$\mathcal{N}(2,8)$	$\mathcal{N}(2.02,4.09)$
3	$\mathcal{N}(0,0)$	$\mathcal{N}(3,6)$	$\mathcal{N}(3,0)$	$\mathcal{N}(3,18)$	$\mathcal{N}(3.03,6.3)$
4	$\mathcal{N}(0,0)$	$\mathcal{N}(4,8)$	$\mathcal{N}(4,-4)$	$\mathcal{N}(4,32)$	$\mathcal{N}(4.03,8.35)$
5	$\mathcal{N}(0,0)$	$\mathcal{N}(5,10)$	$\mathcal{N}(5,-10)$	$\mathcal{N}(5,50)$	$\mathcal{N}(5.08,10.4)$
Theory	$\mathcal{N}(0,0)$	$\mathcal{N}(n, 2 n)$	$\mathcal{N}(n,(3-n) n)$	$\mathcal{N}\left(n, 2 n^{2}\right)$	$\rightarrow \mathcal{N}(n, 2 n)$

Conclusion: TT2 works, not the unscented transforms.

Example 1: squared norm

Squared norm of a Gaussian vector has a known distribution:

$$
z=g(x)=x^{T} x, \quad x \sim \mathcal{N}\left(0, I_{n}\right) \Rightarrow z \sim \chi^{2}(n)
$$

Theoretical distribution is $\chi^{2}(n)$ with mean n and variance $2 n$. The mean and variance are below summarized as a Gaussian distribution. Using 10000 Monte Carlo simulations.

n	TT1	TT2	UT1	UT2	MCT
1	$\mathcal{N}(0,0)$	$\mathcal{N}(1,2)$	$\mathcal{N}(1,2)$	$\mathcal{N}(1,2)$	$\mathcal{N}(1.02,2.15)$
2	$\mathcal{N}(0,0)$	$\mathcal{N}(2,4)$	$\mathcal{N}(2,2)$	$\mathcal{N}(2,8)$	$\mathcal{N}(2.02,4.09)$
3	$\mathcal{N}(0,0)$	$\mathcal{N}(3,6)$	$\mathcal{N}(3,0)$	$\mathcal{N}(3,18)$	$\mathcal{N}(3.03,6.3)$
4	$\mathcal{N}(0,0)$	$\mathcal{N}(4,8)$	$\mathcal{N}(4,-4)$	$\mathcal{N}(4,32)$	$\mathcal{N}(4.03,8.35)$
5	$\mathcal{N}(0,0)$	$\mathcal{N}(5,10)$	$\mathcal{N}(5,-10)$	$\mathcal{N}(5,50)$	$\mathcal{N}(5.08,10.4)$
Theory	$\mathcal{N}(0,0)$	$\mathcal{N}(n, 2 n)$	$\mathcal{N}(n,(3-n) n)$	$\mathcal{N}\left(n, 2 n^{2}\right)$	$\rightarrow \mathcal{N}(n, 2 n)$

Conclusion: TT2 works, not the unscented transforms.

Example 2: radar

Conversion of polar measurements to Cartesian position:

$$
z=g(x)=\binom{x_{1} \cos \left(x_{2}\right)}{x_{1} \sin \left(x_{2}\right)}
$$

X	TT1	TT2
$\binom{3.0}{0.0},\left(\begin{array}{ll}1.0 & 0.0 \\ 0.0 & 1.0\end{array}\right)$	$\binom{3.0}{0.0}, \quad\left(\begin{array}{ll}1.0 & 0.0 \\ 0.0 & 9.0\end{array}\right)$	$\binom{2.0}{-0.0},\left(\begin{array}{cc}3.0 & 0.0 \\ 0.0 & 10.0\end{array}\right)$
$\binom{3.0}{0.5},\left(\begin{array}{ll}1.0 & 0.0 \\ 0.0 & 1.0\end{array}\right)$	$\binom{2.6}{1.5},\left(\begin{array}{cc}3.0 & -3.5 \\ -3.5 & 7.0\end{array}\right)$	$\binom{-1.4}{0.5},\left(\begin{array}{cc}27.0 & 2.5 \\ 2.5 & 9.0\end{array}\right)$
$\binom{3.0}{0.8},\left(\begin{array}{ll}1.0 & 0.0 \\ 0.0 & 1.0\end{array}\right)$	$\binom{2.1}{2.1},\left(\begin{array}{cc}\text { 5.0 } & -4.0 \\ -4.0 & 5.0\end{array}\right)$	$\binom{2.1}{2.1},\left(\begin{array}{cc}9.0 & 0.0 \\ 0.0 & 13.0\end{array}\right)$
UT1	UT2	MCT
$\binom{1.8}{0.0},\left(\begin{array}{ll}3.7 & 0.0 \\ 0.0 & 2.9\end{array}\right)$	$\binom{1.5}{0.0}, \quad\left(\begin{array}{ll}5.5 & 0.0 \\ 0.0 & 9.0\end{array}\right)$	$\binom{1.8}{0.0},\left(\begin{array}{ll}2.5 & 0.0 \\ 0.0 & 4.4\end{array}\right)$
$\binom{1.6}{0.9},\left(\begin{array}{ll}3.5 & 0.3 \\ 0.3 & 3.1\end{array}\right)$	$\binom{1.3}{0.8},\left(\begin{array}{cc}6.4 & -1.5 \\ -1.5 & 8.1\end{array}\right)$	$\binom{1.6}{0.9},\left(\begin{array}{cc}2.9 & -0.8 \\ -0.8 & 3.9\end{array}\right)$
$\binom{1.3}{1.3},\left(\begin{array}{ll}3.3 & 0.4 \\ 0.4 & 3.3\end{array}\right)$	$\binom{1.1}{1.1},\left(\begin{array}{cc}7.2 & -1.7 \\ -1.7 & 7.2\end{array}\right)$	$\binom{1.3}{1.3},\left(\begin{array}{cc}3.4 & -1.0 \\ -1.0 & 3.4\end{array}\right)$

Example 3: standard sensor networks measurements

Standard measurements:

$$
\begin{aligned}
& g_{\mathrm{TOA}}(x)=\|x\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \\
& g_{\mathrm{DOA}}(x)=\arctan 2\left(x_{1}, x_{2}\right)
\end{aligned}
$$

TOA	
X	$\mathcal{N}([3 ; 0],[1,0 ; 0,10])$
TT1	$\mathcal{N}(3,1)$
TT2	$\mathcal{N}(4.67,6.56)$
UT2	$\mathcal{N}(4.08,3.34)$
MCT	$\mathcal{N}(4.08,1.94)$

DOA:	$g(x)=\arctan 2\left(x_{2}, x_{1}\right)$
X	$\mathcal{N}([3 ; 0],[10,0 ; 0,1])$
TT1	$\mathcal{N}(0,0.111)$
TT2	$\mathcal{N}(0,0.235)$
UT2	$\mathcal{N}(0.524,1.46)$
MCT	$\mathcal{N}(0.0702,1.6)$

Conclusion: UT works slightly better than TT1 and TT2. Studying RSS measurements,

$$
g_{\mathrm{RSS}}(x)=c_{0}-c_{2} \cdot 10 \log _{10}\left(\mid x \|^{2}\right)
$$

gives similar results.

KF, EKF and UKF in one framework

Lemma 7.1 If

$$
\binom{X}{Y} \sim \mathcal{N}\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{ll}
P_{x x} & P_{x y} \\
P_{x y} & P_{y y}
\end{array}\right)\right)=\mathcal{N}\left(\binom{\mu_{x}}{\mu_{y}}, P\right)
$$

Then, the conditional distribution for X, given the observed $Y=y$, is Gaussian distributed:

$$
(X \mid Y=y) \sim \mathcal{N}\left(\mu_{x}+P_{x y} P_{y y}^{-1}\left(y-\mu_{y}\right), P_{x x}-P_{x y} P_{y y}^{-1} P_{y x}\right)
$$

Connection to the Kalman filter

The Kalman gain is in this notation given by

$$
K_{k}=P_{x y} P_{y y}^{-1}
$$

Kalman Filter Algorithm (1/2)

Time update: Let

$$
\begin{aligned}
& \bar{x}=\binom{x_{k}}{v_{k}} \sim \mathcal{N}\left(\binom{\hat{x}_{k \mid k}}{0},\left(\begin{array}{cc}
P_{k \mid k} & 0 \\
0 & Q_{k}
\end{array}\right)\right) \\
& z=x_{k+1}=f\left(x_{k}, u_{k}, v_{k}\right)=g(\bar{x}) .
\end{aligned}
$$

The transformation approximation (UT, MC, TT1, TT2) gives

$$
z \sim \mathcal{N}\left(\hat{x}_{k+1 \mid k}, P_{k+1 \mid k}\right)
$$

Kalman Filter Algorithm (2/2)
 Measurement update: Let

$$
\begin{aligned}
& \bar{x}=\binom{x_{k}}{e_{k}} \sim \mathcal{N}\left(\binom{\hat{x}_{k \mid k-1}}{0},\left(\begin{array}{cc}
P_{k \mid k-1} & 0 \\
0 & R_{k}
\end{array}\right)\right) \\
& z=\binom{x_{k}}{y_{k}}=\binom{x_{k}}{h\left(x_{k}, u_{k}, e_{k}\right)}=g(\bar{x}) .
\end{aligned}
$$

The transformation approximation (UT, MC, TT1, TT2) gives

$$
z \sim \mathcal{N}\left(\binom{\hat{x}_{k \mid k-1}}{\hat{y}_{k \mid k-1}},\left(\begin{array}{cc}
P_{k \mid k-1}^{x x} & P_{k \mid k-1}^{x y} \\
P_{k \mid k-1}^{y x} & P_{k \mid k-1}^{y y}
\end{array}\right)\right) .
$$

The measurement update is now

$$
\begin{aligned}
K_{k} & =P_{k \mid k-1}^{x y}\left(P_{k \mid k-1}^{y y}\right)^{-1} \\
\hat{x}_{k \mid k} & =\hat{x}_{k \mid k-1}+K_{k}\left(y_{k}-\hat{y}_{k \mid k-1}\right) \\
P_{k \mid k} & =P_{k \mid k-1}-K_{k} P_{k \mid k-1}^{y x}
\end{aligned}
$$

Comments

- The filter obtained using TT1 is equivalent to the standard EKF1.
- The filter obtained using TT2 is equivalent to EKF2.
- The filter obtained using UT is equivalent to UKF.
- The Monte Carlo approach should be the most accurate, since it asymptotically computes the correct first and second order moments.
- There is a freedom to mix transform approximations in the time and measurement update.

Choice of Nonlinear Filter

- Depends mainly on:
(i) SNR.
(ii) the degree of nonlinearity.
(iii) the degree of non-Gaussian noise, in particular if any distribution is multi-modal (has several local maxima).
- SNR and degree of nonlinearity is connected through the rest term, whose expected value is:

$$
\mathrm{E}(x-\hat{x})^{T} g^{\prime \prime}(\xi)(x-\hat{x})=\mathrm{E}\left(\operatorname{tr}\left(g^{\prime \prime}(\xi)(x-\hat{x})(x-\hat{x})^{T}\right)\right)=\operatorname{tr}\left(g^{\prime \prime}(\xi) P\right)
$$

Small rest term requires either high SNR (small P) or almost linear functions (small $f^{\prime \prime}$ and $h^{\prime \prime}$).

- If the rest term is small, use EKF1.
- If the rest term is large, and the nonlinearities are essentially quadratic (example $x^{T} x$) use EKF2.
- If the rest term is large, and the nonlinearities are not essentially quadratic try UKF.
- If the functions are severly nonlinear or any distribution is multi-modal, consider filterbanks or particle filter.

Virtual Yaw Rate Sensor

- Yaw rate subject to bias, orientation error increases linearly in time.
- Wheel speeds also give a gyro, where the orientation error grows linearly in distance.

Model, with state vector $x_{k}=\left(\dot{\psi}_{k}, \ddot{\psi}, b_{k}, \frac{r_{k, 3}}{r_{k, 4}}\right)$ and the measurements

Virtual Yaw Rate Sensor

- Yaw rate subject to bias, orientation error increases linearly in time.
- Wheel speeds also give a gyro, where the orientation error grows linearly in distance.

Model, with state vector $x_{k}=\left(\dot{\psi}_{k}, \ddot{\psi}, b_{k}, \frac{r_{k, 3}}{r_{k, 4}}\right)$ and the measurements

Sounding Rocket

Navigation grade IMU gives accurate dead-reckoning, but drift may cause return at bad places. GPS is restricted for high speeds and high accelerations.
Fusion of IMU and GPS when pseudo-ranges are available, with IMU support to tracking loops inside GPS.

- Loose integration: direct fusion approach $y_{k}=p_{k}+e_{k}$.
- Tight integration: TDOA fusion approach $y_{k}^{i}=\left|p_{k}-p_{k}^{i}\right| / c+t_{k}+e_{k}$.

Sounding Rocket

Navigation grade IMU gives accurate dead-reckoning, but drift may cause return at bad places. GPS is restricted for high speeds and high accelerations.
Fusion of IMU and GPS when pseudo-ranges are available, with IMU support to tracking loops inside GPS.

- Loose integration: direct fusion approach $y_{k}=p_{k}+e_{k}$.
- Tight integration: TDOA fusion approach $y_{k}^{i}=\left|p_{k}-p_{k}^{i}\right| / c+t_{k}+e_{k}$.

Sounding Rocket

Navigation grade IMU gives accurate dead-reckoning, but drift may cause return at bad places. GPS is restricted for high speeds and high accelerations.
Fusion of IMU and GPS when pseudo-ranges are available, with IMU support to tracking loops inside GPS.

- Loose integration: direct fusion approach $y_{k}=p_{k}+e_{k}$.
- Tight integration: TDOA fusion approach $y_{k}^{i}=\left|p_{k}-p_{k}^{i}\right| / c+t_{k}+e_{k}$.

Sounding Rocket

Navigation grade IMU gives accurate dead-reckoning, but drift may cause return at bad places. GPS is restricted for high speeds and high accelerations.
Fusion of IMU and GPS when pseudo-ranges are available, with IMU support to tracking loops inside GPS.

- Loose integration: direct fusion approach $y_{k}=p_{k}+e_{k}$.
- Tight integration: TDOA fusion approach $y_{k}^{i}=\left|p_{k}-p_{k}^{i}\right| / c+t_{k}+e_{k}$.

MC Leaning Angle

- Headlight steering, ABS and anti-spin systems require leaning angle.
- Gyro very expensive for this application.
- Combination of accelerometers investigated, lateral and downward acc worked fine in EKF.

Model, where $z_{y}, z_{z}, a_{1}, a_{2}, J$ are constants relating to geometry and inertias of the motorcycle, $u=v_{x}$

$$
x=\left(\begin{array}{llllllll}
\varphi & \dot{\varphi} & \ddot{\varphi} & \dot{\psi} & \ddot{\psi} & \delta_{a y} & \delta_{a z} & \delta_{\dot{\varphi}}
\end{array}\right)^{T} .
$$

$$
y=h(x)=\left(\begin{array}{c}
a_{y} \\
a_{z} \\
\dot{\varphi}
\end{array}\right)=\left(\begin{array}{c}
u x_{4}-z_{y} x_{3}+z_{y} x_{4}^{2} \tan \left(x_{1}\right)+g \sin \left(x_{1}\right)+x_{6} \\
-u x_{4} \tan \left(x_{1}\right)-z_{z}\left(x_{2}^{2}+x_{4}^{2} \tan ^{2}\left(x_{1}\right)\right)+g \cos \left(x_{1}\right)+x_{7} \\
-a_{1} x_{3}+a_{2} x_{4}^{2} \tan \left(x_{1}\right)-u x_{4} J+x_{6}
\end{array}\right)
$$

MC Leaning Angle

- Headlight steering, ABS and anti-spin systems require leaning angle.
- Gyro very expensive for this application.
- Combination of accelerometers investigated, lateral and downward acc worked fine in EKF.

Model, where $z_{y}, z_{z}, a_{1}, a_{2}, J$ are constants relating to geometry and inertias of the motorcycle, $u=v_{x}$

$$
x=\left(\begin{array}{llllllll}
\varphi & \dot{\varphi} & \ddot{\varphi} & \dot{\psi} & \ddot{\psi} & \delta_{a y} & \delta_{a z} & \delta_{\dot{\varphi}}
\end{array}\right)^{T} .
$$

$$
y=h(x)=\left(\begin{array}{c}
a_{y} \\
a_{z} \\
\dot{\varphi}
\end{array}\right)=\left(\begin{array}{c}
u x_{4}-z_{y} x_{3}+z_{y} x_{4}^{2} \tan \left(x_{1}\right)+g \sin \left(x_{1}\right)+x_{6} \\
-u x_{4} \tan \left(x_{1}\right)-z_{z}\left(x_{2}^{2}+x_{4}^{2} \tan ^{2}\left(x_{1}\right)\right)+g \cos \left(x_{1}\right)+x_{7} \\
-a_{1} x_{3}+a_{2} x_{4}^{2} \tan \left(x_{1}\right)-u x_{4} J+x_{6}
\end{array}\right)
$$

Summary

Summary Lecture 6

Key tool for a unified derivation of KF, EKF, UKF.

$$
\begin{aligned}
\binom{X}{Y} & \sim \mathcal{N}\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{ll}
P_{x x} & P_{x y} \\
P_{x y} & P_{y y}
\end{array}\right)\right) \\
\Rightarrow(X \mid Y=y) & \sim \mathcal{N}\left(\mu_{x}+P_{x y} P_{y y}^{-1}\left(y-\mu_{y}\right), P_{x x}-P_{x y} P_{y y}^{-1} P_{y x}\right)
\end{aligned}
$$

The Kalman gain is in this notation given by $K_{k}=P_{x y} P_{y y}^{-1}$.

- In KF, $P_{x y}$ and $P_{y y}$ follow from a linear Gaussian model.
- In EKF, $P_{x y}$ and $P_{y y}$ can be computed from a linearized model (requires analytic gradients).
- In EKF and UKF, $P_{x y}$ and $P_{y y}$ computed by NLT for transformation of $\left(x^{T}, v^{T}\right)^{T}$ and $\left(x^{T}, e^{T}\right)^{T}$, respectively. No gradients required, just function evaluations.

Gustaf Hendeby

gustaf.hendeby@liu.se
www.liu.se

