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Le 6: Kalman filter (KF), approximations (EKF, UKF)

Whiteboard:

• Derivation framework for KF, EKF, UKF

Slides:

• Kalman filter summary: main equations, robustness, sensitivity,
divergence monitoring, user aspects.

• Nonlinear transforms revisited.

• Application to derivation of EKF and UKF.

• User guidelines and interpretations.
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Lecture 5: summary
• Standard models in global coordinates:

Translation p
(m)
t = wp

t

2D orientation for heading h
(m)
t = wh

t
Coordinated turn model

Ẋ = vX Ẏ = vY

v̇X = −ωvY v̇Y = ωvX

ω̇ = 0

• Standard models in local coordinates (x, y, ψ)
Odometry and dead reckoning for (x, y, ψ)

Xt = X0 +

∫ t

0
vxt cos(ψt) dt Yt = Y0 +

∫ t

0
vxt sin(ψt) dt

ψt = ψ0 +

∫ t

0
ψ̇t dt

Force models for (ψ̇, ay, ax, . . . )
3D orientation q̇ = 1

2S(ω)q =
1
2 S̄(q)ω



Kalman Filter (KF)
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Chapter 7 Overview

Kalman filter

• Algorithms and derivation

• Practical issues

• Computational aspects

• Filter monitoring

The discussion and conclusions do usually apply to all nonlinear filters,
though it is more concrete in the linear Gaussian case.
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Kalman Filter (KF)
Time-varying state space model:

xk+1 = Fkxk +Gkvk, cov(vk) = Qk

yk = Hkxk + ek, cov(ek) = Rk

Time update:

x̂k+1|k = Fkx̂k|k

Pk+1|k = FkPk|kF
T
k +GkQkG

T
k

Measurement update:

x̂k|k = x̂k|k−1 + Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1(yk −Hkx̂k|k−1)

Pk|k = Pk|k−1 − Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1HkPk|k−1.
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KF Modifications
Auxiliary quantities: innovation εk, innovation covariance Sk and Kalman gain Kk

ŷk = Hkx̂k|k−1

εk = yk −Hkx̂k|k−1 = yk − ŷk

Sk = HkPk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 = Pk|k−1H
T
k S

−1
k

Filter form
x̂k|k = Fk−1x̂k−1|k−1 +Kk(yk −HkFk−1x̂k−1|k−1)

= (Fk−1 −KkHkFk−1)x̂k−1|k−1 +Kkyk,

Predictor form

x̂k+1|k = Fkx̂k|k−1 + FkKk(yk −Hkx̂k|k−1)

= (Fk − FkKkHk)x̂k|k−1 + FkKkyk
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Simulation Example (1/2)

Create a constant velocity model, simulate and Kalman filter.

� �
T = 0.5;

F = [1 0 T 0; 0 1 0 T; 0 0 1 0; 0 0 0 1];

G = [T^2/2 0; 0 T^2/2; T 0; 0 T];

H = [1 0 0 0; 0 1 0 0];

R = 0.03* eye (2);

m = lss(F, [], H,[], G*G’, R, 1/T);

m.xlabel = {’X’, ’Y’, ’vX’, ’vY’};

m.ylabel = {’X’, ’Y’};

m.name = ’Constant␣velocity␣motion␣model ’;

z = simulate(m, 20);

xhat1 = kalman(m, z, ’alg’, 2, ’k’, 1); % Time -varying

xplot2(z, xhat1 , ’conf’, 90, [1 2]);� �
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Simulation Example (2/2)

Covariance illustrated as confidence ellipsoids in 2D plots or confidence bands in 1D
plots.

� �
xplot(z, xhat1 , ’conf’, 99)� �
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Tuning the KF

• The SNR ratio ∥Q∥/∥R∥ is the most crucial, it sets the filter speeds. Note
difference of real system and model used in the KF.

• Recommentation: fix R according to sensor specification/performance, and tune Q
(motion models are anyway subjective approximations of reality).

• High SNR in the model, gives fast filter that is quick in adapting to
changes/maneuvers, but with larger uncertainty (small bias, large variance).

• Conversely, low SNR in the model, gives slow filter that is slow in adapting to
changes/maneuvers, but with small uncertainty (large bias, small variance).

• P0 reflects the belief in the prior x1 ∼ N (x̂1|0, P0). Possible to choose P0 very large
(and x̂1|0 arbitrary), if no prior information exists.

• Tune covariances in large steps (order of magnitudes)!
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Optimality Properties

• For a linear model, the KF provides the WLS solution.

• The KF is the best linear unbiased estimator (BLUE).

• It is the Bayes optimal filter for linear model when x0, vk, ek are
Gaussian variables,

xk+1|y1:k ∼ N (x̂k+1|k, Pk+1|k)

xk|y1:k ∼ N (x̂k|k, Pk|k)

εk ∼ N (0, Sk).
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Robustness and Sensitivity

The following concepts are relevant for all filtering
applications, but they are most explicit for KF:

• Observability is revealed indirectly by Pk|k; monitor its
rank or better condition number.

• Divergence tests Monitor performance measures and
restart the filter after divergence.

• Outlier rejection monitor sensor observations.

• Bias error incorrect model gives bias in estimates.

• Sensitivity analysis uncertain model contributes to the
total covariance.

• Numerical issues may give complex estimates.
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Observability

1. Snapshot observability if Hk has full rank. WLS can be applied to estimate x.

2. Classical observability for time-invariant and time/varying case,

O =


H
HF
HF 2

...
HFn−1

 Ok =


Hk−n+1

Hk−n+2Fk−n+1

Hk−n+3Fk−n+2Fk−n+1
...

HkFk−1 . . . Fk−n+1

 .

3. The covariance matrix Pk|k extends the observability condition by weighting with
the measurement noise and to forget old information according to the process noise.
Thus, (the condition number of) Pk|k is the natural indicator of observability!
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Divergence Tests
When is εkε

T
k significantly larger than its computed expected value

Sk = E(εkε
T
k ) (note that εk ∼ N (0, Sk))?

Principal reasons:

• Model errors

• Sensor model errors: offsets, drifts, incorrect covariances, scaling
factor in all covariances

• Sensor errors: outliers, missing data

• Numerical issues

Solutions:

• In the first two cases, the filter has to be redesigned.

• In the last two cases, the filter has to be restarted.
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Outlier Rejection

Outlier rejection as a hypothesis test

Let H0 : εk ∼ N (0, Sk), then

T (yk) = εTk S
−1
k εk ∼ χ2

nyk

if everything works fine, and there is no outlier. If T (yk) > hPfa , this is
an indication of outlier, and the measurement update can be omitted.

In the case of several sensors, each sensor i should be monitored for
outliers

T (yik) = (εik)
TS−1

k εik ∼ χ2
n
yi
k

.
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Sensitivity analysis: parameter uncertainty

Sensitivity analysis can be done with respect to uncertain parameters with known
covariance matrix using for instance Gauss approximation formula.

• Assume F (θ), G(θ), H(θ), Q(θ), R(θ) have uncertain parameters θ with E(θ) = θ̂
and cov(θ) = Pθ.

• The state estimate x̂k is a stochastic variable with four stochastic sources, vk, ek, x1
at one hand, and θ on the other hand.

• The law of total variance (var(X) = E var(X|Y ) + var E(X|Y )) and Gauss
approximation formula (var(h(Y )) ≈ h′Y (Ȳ ) var(Y )(h′Y (Ȳ ))T ) gives

cov(x̂k|k) ≈ Pk|k +
dx̂k|k

dθ
Pθ

(
dx̂k|k

dθ

)T
.

• The gradient dx̂k|k/dθ can be computed numerically by simulations.
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Numerical Issues

Some simple fixes if problem occurs:

• Assure that the covariance matrix is symmetric
P = 0.5*P + 0.5*P’.

• Use the more numerically stable Joseph’s form for the measurement update of the
covariance matrix:

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T +KkRkK

T
k .

• Assure that the covariance matrix is positive definite by setting negative eigenvalues
in P to zero or small positive values.

• Avoid singular R = 0, even for constraints.

• Dithering. Increase Q and R if needed; this can account for all kind of model errors.



Kalman Filter Approximations
(EKF, UKF)
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Chapter 8 Overview

• Nonlinear transformations.

• Details of the EKF algorithms.

• Numerical methods to compute Jacobian and Hessian in the
Taylor expansion.

• An alternative EKF version without the Ricatti equation.

• The unscented Kalman filter (UKF).
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EKF1 and EKF2 principle

Apply TT1 and TT2, respectively, to the dynamic and observation
models. For instance,

xk+1 = f(xk) + vk = f(x̂) + g′(x̂)(x− x̂) +
1

2
(x− x̂)T g′′(ξ)(x− x̂).

• EKF1 neglects the rest term.

• EKF2 compensates with the mean and covariance of the rest term
using ξ = x̂.
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EKF1

and EKF2

Algorithm
Sk = h′x(x̂k|k−1)Pk|k−1(h

′
x(x̂k|k−1))

T + h′e(x̂k|k−1)Rk(h
′
e(x̂k|k−1))

T

+ 1
2

[
tr(h′′i,x(x̂k|k−1)Pk|k−1h

′′
j,x(x̂k|k−1)Pk|k−1)

]
ij

Kk = Pk|k−1(h
′
x(x̂k|k−1))

TS−1
k

εk = yk − h(x̂k|k−1, 0)

− 1
2

[
tr(h′′i,xPk|k−1)

]
i

x̂k|k = x̂k|k−1 +Kkεk

Pk|k = Pk|k−1 − Pk|k−1(h
′
x(x̂k|k−1))

TS−1
k h′x(x̂k|k−1)Pk|k−1

+ 1
2

[
tr(h′′i,x(x̂k|k−1)Pk|k−1h

′′
j,x(x̂k|k−1)Pk|k−1)

]
ij

x̂k+1|k = f(x̂k|k, 0)

+ 1
2

[
tr(f ′′i,xPk|k)

]
i

Pk+1|k = f ′x(x̂k|k)Pk|k(f
′
x(x̂k|k))

T + f ′v(x̂k|k)Qk(f
′
v(x̂k|k))

T

+ 1
2

[
tr(f ′′i,x(x̂k|k)Pk|kf

′′
j,x(x̂k|k)Pk|k)

]
ij

NB!
This form of the EKF2 (as given in the book) is disregarding second order terms of the
process noise! See, e.g., my thesis for the full expressions.
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EKF1 and EKF2 Algorithm
Sk = h′x(x̂k|k−1)Pk|k−1(h

′
x(x̂k|k−1))

T + h′e(x̂k|k−1)Rk(h
′
e(x̂k|k−1))

T

+ 1
2

[
tr(h′′i,x(x̂k|k−1)Pk|k−1h

′′
j,x(x̂k|k−1)Pk|k−1)

]
ij

Kk = Pk|k−1(h
′
x(x̂k|k−1))

TS−1
k

εk = yk − h(x̂k|k−1, 0)− 1
2

[
tr(h′′i,xPk|k−1)

]
i

x̂k|k = x̂k|k−1 +Kkεk

Pk|k = Pk|k−1 − Pk|k−1(h
′
x(x̂k|k−1))

TS−1
k h′x(x̂k|k−1)Pk|k−1

+ 1
2

[
tr(h′′i,x(x̂k|k−1)Pk|k−1h

′′
j,x(x̂k|k−1)Pk|k−1)

]
ij

x̂k+1|k = f(x̂k|k, 0)+
1
2

[
tr(f ′′i,xPk|k)

]
i

Pk+1|k = f ′x(x̂k|k)Pk|k(f
′
x(x̂k|k))

T + f ′v(x̂k|k)Qk(f
′
v(x̂k|k))

T

+ 1
2

[
tr(f ′′i,x(x̂k|k)Pk|kf

′′
j,x(x̂k|k)Pk|k)

]
ij

NB!
This form of the EKF2 (as given in the book) is disregarding second order terms of the
process noise! See, e.g., my thesis for the full expressions.
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Comments

• The EKF1, using the TT1 transformation, is obtained by letting
both Hessians f ′′x and h′′x be zero.

• Analytic Jacobian and Hessian needed. If not available, use
numerical approximations (done in Signal and Systems Lab by
default!)

• The complexity of EKF1 is as in KF n3x due to the FPF T

operation.

• The complexity of EKF2 is n5x due to the FiPF
T
j operation for

i, j = 1, . . . , nx.

• Dithering is good! That is, increase Q and R from the simulated
values to account for the approximation errors.
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EKF Variations

• The standard EKF linearizes around the current state estimate.

• The linearized Kalman filter linearizes around some reference
trajectory.

• The error state Kalman filter, also known as the complementary
Kalman filter, estimates the state error x̃k = xk − x̂k with respect
to some approximate or reference trajectory. Feedforward or
feedback configurations.

linearized Kalman filter = feedforward error state Kalman filter
EKF = feedback error state Kalman filter
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Derivative-Free Algorithms

Numeric derivatives are preferred in the following cases:

• The nonlinear function is too complex.

• The derivatives are too complex functions.

• A user-friendly algorithm is desired, with as few user inputs as
possible.

This can be achieved with either numerical approximation or using
sigma points!



TSRT14 Lecture 6 Gustaf Hendeby Spring 2024 24 / 42

Nonlinear transformations (NLT)
Consider a second order Taylor expansion of a function z = g(x):

z = g(x) = g(x̂) + g′(x̂)(x− x̂) + 1
2(x− x̂)T g′′(ξ)(x− x̂)︸ ︷︷ ︸

r(x;x̂,g′′(ξ))

.

The rest term is negligible and EKF works fine if:
• the model is almost linear
• or the SNR is high, so ∥x− x̂∥ can be considered small.

The size of the rest term can be approximated a priori.
Note: the size may depend on the choice of state coordinates!

If the rest term is large, use either of
• the second order compensated EKF that compensates for the mean and covariance
of r(x; x̂, g′′(ξ)) ≈ r(x; x̂, g′′(x̂)).

• the unscented KF (UKF).



TSRT14 Lecture 6 Gustaf Hendeby Spring 2024 25 / 42

TT1: first order Taylor approximation

The first order Taylor term gives a contribution to the covariance:

x ∼ N
(
x̂, P

)
→N

(
g(x̂), [g′i(x̂)P (g

′
j(x̂))

T ]ij
)
= N

(
g(x̂), g′(x̂)P (g′(x̂))T

)
• This is sometimes called Gauss’ approximation formula.

• Here [A]ij means element i, j in the matrix A. This is used in EKF1 (EKF with first
order Taylor expansion). Leads to a KF where nonlinear functions are approximated
with their Jacobians.

• Compare with the linear transformation rule

z = Gx, x ∼ N
(
x̂, P

)
−→ z ∼ N

(
Gx̂,GPGT

)
.

• Note that GPGT can be written [GiPG
T
j ]ij , where Gi denotes row i of G.
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TT2: second order Taylor approximation

The second order Taylor term contributes both to the mean and covariance as follows:

x ∼ N
(
x̂, P

)
→ N

(
g(x̂)+1

2 [tr(g
′′
i (x̂)P )]i, [g

′
i(x̂)P (g

′
j(x̂))

T+1
2 tr(Pg

′′
i (x̂)Pg

′′
j (x̂))]ij

)
• This is used in EKF2 (EKF with second order Taylor expansion). Leads to a KF
where nonlinear functions are approximated with their Jacobians and Hessians.

• UKF tries to do this approximation numerically, without forming the Hessian g′′(x)
explicitly. This reduces the n5x complexity in

[
tr
(
Pg′′i (x̂)Pg

′′
j (x̂)

)]
ij
to n3x

complexity.
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MC: Monte Carlo sampling

Generate N samples, transform them, and fit a Gaussian distribution

x(i) ∼ N
(
x̂, P

)
z(i) = g(x(i))

µz =
1

N

N∑
i=1

z(i)

Pz =
1

N − 1

N∑
i=1

(
z(i) − µz

)(
z(i) − µz

)T
Not commonly used in nonlinear filtering, but a valid and solid approach!
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UT: the unscented transform
At first sight, similar to MC:
Generate 2nx + 1 sigma points, transform these, and fit a Gaussian distribution:

x(0) = x̂

x(±i) = x̂±
√
nx + λP

1/2
:,i , i = 1, 2, . . . , nx

z(i) = g(x(i))

E(z) ≈ λ

2(nx + λ)
z(0) +

nx∑
i=−nx

1

2(nx + λ)
z(i)

cov(z) ≈
( λ

2(nx + λ)
+(1− α2 + β)

)(
z(0) − E(z)

)(
z(0) − E(z)

)T
+

nx∑
i=−nx

1

2(nx + λ)

(
z(i) − E(z)

)(
z(i) − E(z)

)T
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UT: design parameters
• λ is defined by λ = α2(nx + κ)− nx.
• α controls the spread of the sigma points and is suggested to be chosen around
10−3.

• β compensates for the distribution, and should be chosen to β = 2 for Gaussian
distributions.

• κ is usually chosen to zero.

Note

• nx + λ = α2nx when κ = 0.
• The weights sum to one for the mean, but sum to 2− α2 + β ≈ 4 for the

covariance. Note also that the weights are not in [0, 1].
• The mean has a large negative weight!
• If nx + λ→ 0, then UT and TT2 (and hence UKF and EKF2) are identical for
nx = 1, otherwise closely related!
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Example 1: squared norm
Squared norm of a Gaussian vector has a known distribution:

z = g(x) = xTx, x ∼ N (0, In) ⇒ z ∼ χ2(n).

Theoretical distribution is χ2(n) with mean n and variance 2n. The mean and variance
are below summarized as a Gaussian distribution. Using 10 000 Monte Carlo simulations.

n TT1 TT2 UT1 UT2 MCT
1 N (0, 0) N (1, 2) N (1, 2) N (1, 2) N (1.02, 2.15)
2 N (0, 0) N (2, 4) N (2, 2) N (2, 8) N (2.02, 4.09)
3 N (0, 0) N (3, 6) N (3, 0) N (3, 18) N (3.03, 6.3)
4 N (0, 0) N (4, 8) N (4,−4) N (4, 32) N (4.03, 8.35)
5 N (0, 0) N (5, 10) N (5,−10) N (5, 50) N (5.08, 10.4)

Theory N (0, 0) N (n, 2n) N (n, (3− n)n) N (n, 2n2) → N (n, 2n)

Conclusion: TT2 works, not the unscented transforms.
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Example 2: radar
Conversion of polar measurements to Cartesian position:

z = g(x) =

(
x1 cos(x2)
x1 sin(x2)

)
X TT1 TT2(

3.0
0.0

)
,

(
1.0 0.0
0.0 1.0

) (
3.0
0.0

)
,

(
1.0 0.0
0.0 9.0

) (
2.0
−0.0

)
,

(
3.0 0.0
0.0 10.0

)
(
3.0
0.5

)
,

(
1.0 0.0
0.0 1.0

) (
2.6
1.5

)
,

(
3.0 −3.5
−3.5 7.0

) (
−1.4
0.5

)
,

(
27.0 2.5
2.5 9.0

)
(
3.0
0.8

)
,

(
1.0 0.0
0.0 1.0

) (
2.1
2.1

)
,

(
5.0 −4.0
−4.0 5.0

) (
2.1
2.1

)
,

(
9.0 0.0
0.0 13.0

)
UT1 UT2 MCT(

1.8
0.0

)
,

(
3.7 0.0
0.0 2.9

) (
1.5
0.0

)
,

(
5.5 0.0
0.0 9.0

) (
1.8
0.0

)
,

(
2.5 0.0
0.0 4.4

)
(
1.6
0.9

)
,

(
3.5 0.3
0.3 3.1

) (
1.3
0.8

)
,

(
6.4 −1.5
−1.5 8.1

) (
1.6
0.9

)
,

(
2.9 −0.8
−0.8 3.9

)
(
1.3
1.3

)
,

(
3.3 0.4
0.4 3.3

) (
1.1
1.1

)
,

(
7.2 −1.7
−1.7 7.2

) (
1.3
1.3

)
,

(
3.4 −1.0
−1.0 3.4

)
Conclusion: UT works better than TT1 and TT2.



TSRT14 Lecture 6 Gustaf Hendeby Spring 2024 32 / 42

Example 3: standard sensor networks measurements
Standard measurements:

gtoa(x) = ∥x∥ =
√∑n

i=1 x
2
i

gdoa(x) = arctan2(x1, x2),

TOA 2D: g(x) = ∥x∥
X N ([3; 0], [1, 0; 0, 10])
TT1 N (3, 1)
TT2 N (4.67, 6.56)
UT2 N (4.08, 3.34)
MCT N (4.08, 1.94)

DOA: g(x) = arctan2(x2, x1)
X N ([3; 0], [10, 0; 0, 1])
TT1 N (0, 0.111)
TT2 N (0, 0.235)
UT2 N (0.524, 1.46)
MCT N (0.0702, 1.6)

Conclusion: UT works slightly better than TT1 and TT2. Studying RSS measurements,

grss(x) = c0 − c2 · 10 log10(|x∥2),

gives similar results.
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KF, EKF and UKF in one framework

Lemma 7.1 If (
X
Y

)
∼ N

((
µx
µy

)
,

(
Pxx Pxy
Pxy Pyy

))
= N

((
µx
µy

)
, P

)
Then, the conditional distribution for X, given the observed Y = y, is Gaussian
distributed:

(X|Y = y) ∼ N (µx + PxyP
−1
yy (y − µy), Pxx − PxyP

−1
yy Pyx)

Connection to the Kalman filter

The Kalman gain is in this notation given by

Kk = PxyP
−1
yy .
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Kalman Filter Algorithm (1/2)

Time update: Let

x̄ =

(
xk
vk

)
∼ N

((
x̂k|k
0

)
,

(
Pk|k 0

0 Qk

))
z = xk+1 = f(xk, uk, vk) = g(x̄).

The transformation approximation (UT, MC, TT1, TT2) gives

z ∼ N (x̂k+1|k, Pk+1|k).
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Kalman Filter Algorithm (2/2)
Measurement update: Let

x̄ =

(
xk
ek

)
∼ N

((
x̂k|k−1

0

)
,

(
Pk|k−1 0

0 Rk

))
z =

(
xk
yk

)
=

(
xk

h(xk, uk, ek)

)
= g(x̄).

The transformation approximation (UT, MC, TT1, TT2) gives

z ∼ N

((
x̂k|k−1

ŷk|k−1

)
,

(
P xx
k|k−1 P xy

k|k−1

P yx
k|k−1 P yy

k|k−1

))
.

The measurement update is now

Kk = P xy
k|k−1

(
P yy
k|k−1

)−1
,

x̂k|k = x̂k|k−1 +Kk

(
yk − ŷk|k−1

)
,

Pk|k = Pk|k−1 −KkP
yx
k|k−1.
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Comments

• The filter obtained using TT1 is equivalent to the standard EKF1.

• The filter obtained using TT2 is equivalent to EKF2.

• The filter obtained using UT is equivalent to UKF.

• The Monte Carlo approach should be the most accurate, since it
asymptotically computes the correct first and second order
moments.

• There is a freedom to mix transform approximations in the time
and measurement update.
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Choice of Nonlinear Filter
• Depends mainly on:

(i) SNR.
(ii) the degree of nonlinearity.
(iii) the degree of non-Gaussian noise, in particular if any distribution is multi-modal (has

several local maxima).
• SNR and degree of nonlinearity is connected through the rest term, whose expected value is:

E(x− x̂)T g′′(ξ)(x− x̂) = E
(
tr
(
g′′(ξ)(x− x̂)(x− x̂)T

))
= tr

(
g′′(ξ)P

)
Small rest term requires either high SNR (small P ) or almost linear functions (small f ′′ and
h′′).

• If the rest term is small, use EKF1.

• If the rest term is large, and the nonlinearities are essentially quadratic (example xTx) use
EKF2.

• If the rest term is large, and the nonlinearities are not essentially quadratic try UKF.

• If the functions are severly nonlinear or any distribution is multi-modal, consider filterbanks
or particle filter.
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Virtual Yaw Rate Sensor
• Yaw rate subject to bias, orientation error increases linearly in time.

• Wheel speeds also give a gyro, where the orientation error grows linearly in distance.

Model, with state vector xk =
(
ψ̇k, ψ̈k, bk,

rk,3

rk,4

)
and the measurements

y1k = ψ̇k + bk + e1k y2k =
ω3rnom + ω4rnom

2

2

B

ω3
ω4

rk,3

rk,4
− 1

ω3
ω4

rk,3

rk,4
+ 1

+ e2k.

h
t
t
p
:
/
/
y
o
u
t
u
.
b
e
/
d
9
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z
C
C
I
B
S
9
I

http://youtu.be/d9rzCCIBS9I
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Sounding Rocket
Navigation grade IMU gives accurate dead-reckoning, but drift may cause return at bad places.
GPS is restricted for high speeds and high accelerations.
Fusion of IMU and GPS when pseudo-ranges are available, with IMU support to tracking loops inside GPS.

• Loose integration: direct fusion approach yk = pk + ek.
• Tight integration: TDOA fusion approach yik = |pk − pik|/c+ tk + ek.

h
t
t
p
:
/
/
y
o
u
t
u
.
b
e
/
z
R
H
F
X
f
Z
L
Q
6
4

http://youtu.be/zRHFXfZLQ64
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MC Leaning Angle

• Headlight steering, ABS and anti-spin
systems require leaning angle.

• Gyro very expensive for this application.

• Combination of accelerometers
investigated, lateral and downward acc
worked fine in EKF.

Model, where zy , zz , a1, a2, J are constants
relating to geometry and inertias of the
motorcycle, u = vx

x =
(
φ φ̇ φ̈ ψ̇ ψ̈ δay δaz δφ̇

)T
.

h
t
t
p
:
/
/
y
o
u
t
u
.
b
e
/
h
T
6
S
1
F
g
H
x
O
c
0

y = h(x) =

ayaz
φ̇

 =

 ux4 − zyx3 + zyx24 tan(x1) + g sin(x1) + x6
−ux4 tan(x1)− zz

(
x22 + x24 tan

2(x1)
)
+ g cos(x1) + x7

−a1x3 + a2x24 tan(x1)− ux4J + x6



http://youtu.be/hT6S1FgHxOc0
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Summary Lecture 6

Key tool for a unified derivation of KF, EKF, UKF.(
X
Y

)
∼ N

((
µx
µy

)
,

(
Pxx Pxy

Pxy Pyy

))
⇒ (X|Y = y) ∼ N (µx + PxyP

−1
yy (y − µy), Pxx − PxyP

−1
yy Pyx)

The Kalman gain is in this notation given by Kk = PxyP
−1
yy .

• In KF, Pxy and Pyy follow from a linear Gaussian model.

• In EKF, Pxy and Pyy can be computed from a linearized model (requires analytic
gradients).

• In EKF and UKF, Pxy and Pyy computed by NLT for transformation of (xT , vT )T

and (xT , eT )T , respectively. No gradients required, just function evaluations.
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