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Le 8: particle filter theory, marginalized particle filter

Whiteboard:

• PF tuning and properties

Slides:

• Proposal densities and SIS PF

• Marginalized PF (MPF)
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Lecture 7: summary
Basic SIR PF algorithm
Choose the number of particles N .

• Initialization: Generate x
(i)
0 ∼ px0 , i = 1, . . . , N , particles

Iterate for k = 1, 2, . . . , t:

1. Measurement update: For k = 1, 2, . . . ,

w̄
(i)

k|k = w
(i)

k|k−1p(yk|x
(i)
k ).

2. Normalize: w
(i)

k|k := w̄
(i)

k|k/
∑

i w̄
(i)

k|k.

3. Estimation: MMSE x̂k|k ≈
∑N

i=1 w
(i)

k|kx
(i)
k or MAP.

4. Resampling: Bayesian bootstrap: Take N samples with replacement from the set {x(i)
k }Ni=1 where

the probability to take sample i is w
(i)

k|k. Let w
(i)

k|k = 1/N .

5. Prediction: Generate random process noise samples

v
(i)
k ∼ pvk , x

(i)
k+1 = f(x

(i)
k , v

(i)
k ) wk+1|k = wk|k.

Particle Filter Theory

gustaf.hendeby@liu.se


TSRT14 Lecture 8 Gustaf Hendeby Spring 2024 4 / 24

Particle Filter Design: design choices

1. Choice of N is a complexity vs. performance trade-off. Complexity is linear in N ,
while the error in theory is bounded as gk/N , where gk is polynomial in k but
independent of nx.

2. Neff = 1∑
i(w

(i)
k )2

controls how often to resample. Resample if Neff < Nth. Nth = N

gives SIR. Resampling increases variance in the weights, and thus the variance in
the estimate, but it is needed to avoid depletion.

3. The proposal density. An appropriate proposal makes the particles explore the most
critical regions, without wasting efforts on meaningless state regions.

4. Pretending the process (and measurement) noise is larger than it is (dithering,
jittering, roughening) is as for the EKF and UKF often a sound ad hoc solution to
avoid filter divergence.
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Common Particle Filter Extensions

• Main problem with basic SIR PF: depletion. After a while, only one or a few
particles are contributing to x̂.

• The effective number of samples, Neff is a measure of this. Neff = N means that all
particles contribute equally, and Neff = 1 means that only one has a non-zero
weight.

• Too few design parameters, more degrees of freedom:

Sequential importance sampling (SIS): means that you only resample when needed,
Neff < Nth.
The theory allows for a general proposal distribution q(x

(i)
k |x(i)

0:k−1, y1:k) for how to

sample a new state in the time update. The “prior” q(x
(i)
k |x(i)

0:k−1, y1:k) = p(x
(i)
k |x(i)

k−1)
is the standard option, but there might be better ones.
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SIS PF Algorithm
Choose the number of particles N , a proposal density q(x

(i)
k |x(i)0:k−1, y1:k), and a

threshold Nth (for instance Nth = 2
3N).

• Initialization: Generate x
(i)
0 ∼ px0 and ω

(i)
1|0, i = 1, . . . , N .

Iterate for k = 1, 2, . . . :

1. Measurement update: For i = 1, 2, . . . , N :

w
(i)
k|k ∝ w

(i)
k|k−1p(yk|x

(i)
k ), normalize w

(i)
k|k.

2. Estimation: MMSE x̂k|k ≈
∑N

i=1w
(i)
k|kx

(i)
k|k.

3. Resampling: Resample with replacement when Neff = 1∑
i(w

(i)
k|k)

2
< Nth.

4. Prediction: Generate samples x
(i)
k+1 ∼ q(xk|x

(i)
k−1, yk),

update the weights w
(i)
k+1|k ∝ w

(i)
k|k

p(x
(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

k−1,yk)
, normalize w

(i)
k+1|k.
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Sampling from Proposal Density
SIR PF samples from the prior x

(i)
k+1 ∼ p(xk+1|x

(i)
k ). In general, one can sample from

any proposal density,

x
(i)
k+1 ∼ q(xk+1|x

(i)
k , yk+1).

Note that we are allowed to “cheat” and look at the next measurement yk+1 when we
sample. Note that the time update can be written

p(xk+1|y1:k) =
∫
Rnx

q(xk+1|xk, yk+1)
p(xk+1|xk)

q(xk+1|xk, yk+1)
p(xk|y1:k) dxk.

The new approximation becomes

p̂(x1:k+1|y1:k) =
N∑
i=1

p(x
(i)
k+1|x

(i)
k )

q(x
(i)
k+1|x

(i)
k , yk+1)

w
(i)
k|k︸ ︷︷ ︸

w
(i)
k+1|k

δ(x1:k+1 − x
(i)
1:k+1).
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Choice of Proposal Density

1. Factorized form

q(x0:k|y1:k) = q(xk|x0:k−1, y1:k)q(x0:k−1|y1:k).

In the original form, we sample trajectories.

2. Approximate filter form

q(x0:k|y1:k) ≈ q(xk|x0:k−1, y1:k).

In the approximate form, we keep the previous trajectory and just append xk.
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Proposals: (1) optimal form

q(xk|x
(i)
k−1, yk) = p(xk|x

(i)
k−1, yk) =

p(yk|xk)p(xk|x
(i)
k−1)

p(yk|x
(i)
k−1)

,

w
(i)
k|k = w

(i)
k−1|k−1p(yk|xk−1).

Optimal since the sampling process of xk does not influence (that is, increase the
variance of) the weights.

Drawbacks:

• It is generally hard to sample from this proposal density.

• It is generally hard to compute the weight update needed for this proposal density,
since it would require to integrate over the whole state space to obtain something
computable p(yk|xk−1) =

∫
p(yk|xk)p(xk|xk−1) dx.

For linear (linearized) Gaussian likelihood and additive Gaussian process noise, the
integral can be solved, leading to a (extended) KF time update.
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Proposals: (2) prior

q(xk|x
(i)
k−1, yk) = p(xk|x

(i)
k−1),

w
(i)
k|k = w

(i)
k−1|k−1p(yk|x

(i)
k ).

The absolutely simplest and most common choice.
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Proposals: (3) likelihood

q(xk|x
(i)
k−1, yk) = p(yk|xk),

w
(i)
k|k = w

(i)
k−1|k−1p(xk|x

(i)
k−1).

Good in high SNR applications, when the likelihood contains more information about x
than the prior.

Drawback:
The likelihood is not always invertible in x.



Marginalized Particle Filter
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Marginalized Particle Filter (1/2)
Objective: decrease the number of particles for large state spaces
(say nx > 3) by utilizing partial linear Gaussian substructures.

The task of nonlinear filtering can be split into two parts:

1. Representation of the filtering probability density function.
2. Propagation of this density during the time and measurement update stages.

Possible to mix a parametric distribution in some dimensions with grid/particle
represention in the other dimensions.

True

x
n

x
l

Particle

x
n

x
l

Mixed

x
n

x
l
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Marginalized Particle Filter (2/2)

• Model

xnk+1 = fn
k (x

n
k) + Fn

k (x
n
k)x

l
k +Gn

k(x
n
k)w

n
k ,

xlk+1 = f l
k(x

n
k) + F l

k(x
n
k)x

l
k +Gl

k(x
n
k)w

l
k,

yk = hk(x
n
k) +Hk(x

n
k)x

l
k + ek.

All of wn, wl, ek and xk0 are Gaussian. xn0 can be general.

• Basic factorization holds: conditioned on xn1:k, the model is linear and Gaussian.

• This framework covers many navigation, tracking and SLAM problem formulations!
Typically, position is the nonlinear state, while all other ones are (almost) linear
where the (extended) KF is used.
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Marginalized Particle Filter: key factorization

Split the state vector into two parts (‘linear’ and ‘nonlinear’)

xk =

(
xnk
xlk

)
.

The key idea in the MPF is the factorization

p(xlk, x
n
1:k|y1:k) = p(xlk|xn1:k, y1:k)p(xn1:k|y1:k).

The KF provides the first factor, and the PF the second one (requires marginalization as
an implicit step)!
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Marginalized Particle Filter: factorization

KF factor provided by the Kalman filter

p(xlk|xn1:k, y1:k) = N (x̂lk|k, P
l
k|k).

PF factor given by marginalization procedure

p(xn1:k+1|y1:k) = p(xnk+1|xn1:k, y1:k)p(xn1:k|y1:k)

= p(xn1:k|y1:k)
∫

p(xnk+1|xlk, xn1:k, y1:k)p(xlk|xn1:k, y1:k) dxlk

= p(xn1:k|y1:k)
∫

p(xnk+1|xlk, xn1:k, y1:k)N (x̂lk|k, P
l
k|k) dx

l
k.
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Example: marginalized particle filter
Terrain navigation in 1D. Unknown velocity considered as a state:

xk+1 = xk + uk +
T 2
s
2 vk

uk+1 = uk + Tsvk

yk = h(xk) + ek.

Conditional on trajectory x1:k, the velocity is given by a linear and Gaussian model:

uk+1 = uk + Tsvk dynamics

xk+1 − xk = uk +
T 2
s
2 vk measurement.

Given this trajectory, KF time updates linear part:

xk+1 = xk + ûk|k +
T 2
s
2 vk, cov(ûk) = Pk|k

yk = h(xk) + ek.
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Marginalized Particle Filter: principal algorithm

1. PF time update using where xlk is interpreted as process noise.

2. KF time update using for each particle x
n,(i)
1:k .

3. KF extra measurement update using for each particle x
n,(i)
1:k .

4. PF measurement update and resampling where xlk is intepreted as measurement
noise.

5. KF measurement update for each particle x
n,(i)
1:k .

If there is no linear term in the measurement equation, the KF measurement update in 5
disappears, and the Ricatti equation for P becomes the same for all sequences xn1:k.
That is, only one Kalman gain for all particles!
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Marginalized Particle Filter: information flow

• There are five indeces k in the right hand side factorization of the prior.

• Each index is stepped up separately.

• The order is important!

Prior p(xlk, x
p
1:k|y1:k) = p(xlk|x

p
1:k, y1:k)p(x

p
1:k|y1:k)

1. PF TU p(xp1:k|y1:k) ⇒ p(xp1:k+1|y1:k)
2. KF TU p(xlk|x

p
1:k, y1:k) ⇒ p(xlk+1|x

p
1:k, y1:k)

3. KF dyn MU p(xlk+1|x
p
1:k, y1:k) ⇒ p(xlk+1|x

p
1:k+1, y1:k)

4. PF MU p(xp1:k+1|y1:k) ⇒ p(xp1:k+1|y1:k+1)

5. KF obs MU p(xlk+1|x
p
1:k+1, y1:k) ⇒ p(xlk+1|x

p
1:k+1, y1:k+1)

Posterior p(xlk+1, x
p
1:k+1|y1:k+1) = p(xlk+1|x

p
1:k+1, y1:k+1)p(x

p
1:k+1|y1:k+1)
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Marginalized Particle Filter: properties

MPF compared to full PF gives:

• Fewer particles needed.

• Less variance.

• Less risk of divergence.

• Less tuning of importance density and resampling needed.

The price to paid is that the algorithm is more complex.
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Variance Formula

The law of total variance says that

cov(U) = cov
(
E(U |V )

)
+ E

(
cov(U |V )

)
.

Example

x ∼ 0.5N (−1, 1) + 0.5N (1, 1)

Let U = N (0, 1) and V the mode ±1. Then

E(x) = 0,

cov(x) =
(
0.5 · (1− 0)2 + 0.5 · (−1− 0)2

)
+ (0.5 · 1 + 0.5 · 1) = 2
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Property: variance reduction
Letting U = xlk and V = xn1:k gives the following decomposition of the variance of the
PF:

cov(xlk)︸ ︷︷ ︸
PF

= cov
(
E(xlk|xn1:k)

)
+ E

(
cov(xlk|xn1:k)

)

= cov
(
x̂lk|k(x

n,i
1:k)

)︸ ︷︷ ︸
MPF

+
N∑
i=1

wi
k Pk|k(x

n,i
1:k)︸ ︷︷ ︸

KF

.

Potential gains

• Fewer particles/lower complexity with maintained estimate quality.

• Better estimate quality with the same number of particles, e.g., avoid particle
depletion.

Summary
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Filter Summary

• Approximate the model to a case where an optimal algorithm exists:

EKF1 approximates the model with a linear one.
UKF and EKF2 apply higher order approximations.

Gives an approximate Gaussian posterior.
• Approximate the optimal nonlinear filter for the original model:

Point-mass filter (PMF) which uses a regular grid of the state space and applies the
Bayesian recursion.
Particle filter (PF) which uses a random grid of the state space and applies the
Bayesian recursion.

Gives a sample-based numerical approximation of the posterior.


